BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 30213239)

  • 1. Trypsin inhibition by Ligupurpuroside B as studied using spectroscopic, CD, and molecular docking techniques.
    Meti MD; Lin J; Wang Y; Wu Z; Xu H; Xu X; Han Q; Ying M; Hu Z; He Z
    J Biomol Struct Dyn; 2019 Aug; 37(13):3379-3387. PubMed ID: 30213239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding mechanism of lipase to Ligupurpuroside B extracted from Ku-Ding tea as studied by multi-spectroscopic and molecular docking methods.
    Ying M; Meti MD; Xu H; Wang Y; Lin J; Wu Z; Han Q; Xu X; He Z; Hong W; Hu Z
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1345-1352. PubMed ID: 30223054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The study on interactions between levofloxacin and model proteins by using multi-spectroscopic and molecular docking methods.
    Fang Q; Guo C; Wang Y; Liu Y
    J Biomol Struct Dyn; 2018 Jun; 36(8):2032-2044. PubMed ID: 28604271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation on interaction between Ligupurpuroside A and pepsin by spectroscopic and docking methods.
    Shen L; Xu H; Huang F; Li Y; Xiao H; Yang Z; Hu Z; He Z; Zeng Z; Li Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():256-63. PubMed ID: 25078459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling.
    Lin J; Xu Y; Wang Y; Huang S; Li J; Meti MD; Xu X; Hu Z; Liu J; He Z; Xu H
    J Biomol Struct Dyn; 2019 Sep; 37(15):4070-4079. PubMed ID: 30449253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spectroscopic analysis on the interaction of ferulic acid and tetramethylpyrazine with trypsin.
    Shuai L; Chen Z; Fei P; Wang Q; Yang T
    Luminescence; 2014 Feb; 29(1):79-86. PubMed ID: 23606547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toxic interaction between acid yellow 23 and trypsin: spectroscopic methods coupled with molecular docking.
    Wang J; Liu R; Qin P
    J Biochem Mol Toxicol; 2012 Sep; 26(9):360-7. PubMed ID: 22807329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-spectroscopic studies on the interaction between traditional Chinese herb, helicid with pepsin.
    Meti MD; Xu Y; Xie J; Chen Y; Wu Z; Liu J; Han Q; He Z; Hu Z; Xu H
    Mol Biol Rep; 2018 Dec; 45(6):1637-1646. PubMed ID: 30215193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Studies on the Interaction of Spermidine with Bovine Trypsin by Multispectroscopic and Docking Methods.
    Momeni L; Shareghi B; Saboury AA; Farhadian S
    J Phys Chem B; 2016 Sep; 120(36):9632-41. PubMed ID: 27541356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopic investigations on the interactions between isopropanol and trypsin at molecular level.
    Hu X; Yu Z; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 May; 108():50-4. PubMed ID: 23454844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between 8-methoxypsoralen and trypsin: Monitoring by spectroscopic, chemometrics and molecular docking approaches.
    Liu Y; Zhang G; Zeng N; Hu S
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():188-195. PubMed ID: 27653277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissection of the binding of hydrogen peroxide to trypsin using spectroscopic methods and molecular modeling.
    Song W; Yu Z; Hu X; Liu R
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():286-93. PubMed ID: 25228036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of maltose on conformation and activity parameters of trypsin.
    Rajabi M; Shareghi B; Farhadian S; Momeni L
    J Biomol Struct Dyn; 2019 Oct; 37(17):4557-4562. PubMed ID: 30516448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A molecular simulation and spectroscopic approach to the binding affinity between trypsin and 2-propanol and protein conformation.
    Momeni L; Shareghi B; Farhadian S; Vaziri S; Saboury AA; Raisi F
    Int J Biol Macromol; 2018 Nov; 119():477-485. PubMed ID: 30059735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights on the binding of butyl-paraben to trypsin: experimental and computational approaches.
    Mostafavi ES; Asoodeh A; Chamani J
    J Biomol Struct Dyn; 2023 Dec; 41(20):10302-10314. PubMed ID: 36510660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular mechanism of the interaction between resveratrol and trypsin via spectroscopy and molecular docking.
    Ren G; Sun H; Guo J; Fan J; Li G; Xu S
    Food Funct; 2019 Jun; 10(6):3291-3302. PubMed ID: 31094411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu
    Yousuf I; Bashir M; Arjmand F; Tabassum S
    J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spectroscopic and thermal stability study on the interaction between putrescine and bovine trypsin.
    Momeni L; Shareghi B; Saboury AA; Farhadian S; Reisi F
    Int J Biol Macromol; 2017 Jan; 94(Pt A):145-153. PubMed ID: 27720961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the binding mechanisms of α-tocopherol to trypsin and pepsin using isothermal titration calorimetry, spectroscopic, and molecular modeling methods.
    Li X; Ni T
    J Biol Phys; 2016 Jun; 42(3):415-34. PubMed ID: 27094449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the Interactions between Minocycline Hydrochloride and Trypsin with Spectroscopic and Molecular Docking Technology.
    Wang X; Sun J; Ma L; Nie Z; Sai H; Cheng J; Duan J
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.