These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 3021379)

  • 1. [Phantom substances for the quantitative evaluation of MR T images. I. Paramagnetic agar gels for the optimal simulation of tissue specific MR T parameters].
    Lutz NW; Schultz E; Fiegler W
    Digitale Bilddiagn; 1986 Sep; 6(3):97-100. PubMed ID: 3021379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phantom material for quantitative evaluation of MR images.
    Lutz NW; Schultz E
    Med Prog Technol; 1986; 11(4):177-84. PubMed ID: 3027516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phantom substances in the quantitative evaluation of magnetic resonance T-images. II. Effect of relaxation times on magnetic resonance T-intensity values].
    Lutz NW; Schultz E
    Digitale Bilddiagn; 1986 Dec; 6(4):147-50. PubMed ID: 3028695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Phantom substances for quantitative evaluation of MRT images. III. Effect of various protein concentrations on MRT intensity values].
    Lutz NW; Schultz E
    Digitale Bilddiagn; 1987 Mar; 7(1):1-4. PubMed ID: 3032494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multispectral quantitative magnetic resonance imaging of brain iron stores: a theoretical perspective.
    Jara H; Sakai O; Mankal P; Irving RP; Norbash AM
    Top Magn Reson Imaging; 2006 Feb; 17(1):19-30. PubMed ID: 17179894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging of the genitourinary tract.
    LiPuma JP; Bryan PJ; Butler HE; Resnick MI
    Urol Clin North Am; 1986 Aug; 13(3):531-50. PubMed ID: 3523930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative magnetic resonance imaging of subcutaneous adipose tissue.
    Gensanne D; Josse G; Theunis J; Lagarde JM; Vincensini D
    Skin Res Technol; 2009 Feb; 15(1):45-50. PubMed ID: 19152578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Role of magnetic resonance imaging in the tissue characterization of tumors].
    Biagini C
    Radiol Med; 1986 Jun; 72(6):379-92. PubMed ID: 3520712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Imaging of the heart using nuclear magnetic resonance tomography. I: Tomography].
    Lanzer PA; Botvinick EH; Higgins CB
    Z Kardiol; 1985 Aug; 74(8):423-34. PubMed ID: 4049993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a phantom compatible for MRI and hyperthermia using carrageenan gel-relationship between T1 and T2 values and NaCl concentration.
    Yoshida A; Kato H; Kuroda M; Hanamoto K; Yoshimura K; Shibuya K; Kawasaki S; Tsunoda M; Kanazawa S; Hiraki Y
    Int J Hyperthermia; 2004 Dec; 20(8):803-14. PubMed ID: 15764343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BaSO4-loaded agarose: a construction material for multimodality imaging phantoms.
    Litt HI; Brody AS
    Acad Radiol; 2001 May; 8(5):377-83. PubMed ID: 11345267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MR imaging of the breast. Imaging and tissue characterization without intravenous contrast.
    Santyr GE
    Magn Reson Imaging Clin N Am; 1994 Nov; 2(4):673-90. PubMed ID: 7489316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of alternative oral contrast agents for MRI of the gastrointestinal tract.
    Babos M; Schwarcz A; Randhawa MS; Marton B; Kardos L; Palkó A
    Eur J Radiol; 2008 Jan; 65(1):133-9. PubMed ID: 17485189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of paramagnetic ions bound to human serum albumin on water 1HNMR relaxation times.
    Marzola P; Cannistraro S
    Physiol Chem Phys Med NMR; 1986; 18(4):263-73. PubMed ID: 3615639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NMR relaxation data of water proton in normal tissues.
    Akber SF
    Physiol Chem Phys Med NMR; 1996; 28(4):205-38. PubMed ID: 9153797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance imaging. Part I--physical principles.
    Hendee WR; Morgan CJ
    West J Med; 1984 Oct; 141(4):491-500. PubMed ID: 6506686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage.
    Welsch GH; Mamisch TC; Hughes T; Zilkens C; Quirbach S; Scheffler K; Kraff O; Schweitzer ME; Szomolanyi P; Trattnig S
    Invest Radiol; 2008 Sep; 43(9):619-26. PubMed ID: 18708855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of tissue damage in multiple sclerosis by nuclear magnetic resonance.
    Barkhof F; van Walderveen M
    Philos Trans R Soc Lond B Biol Sci; 1999 Oct; 354(1390):1675-86. PubMed ID: 10603619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An automated fast MR-imaging method for localized measurements of dose distributions using NMR-Fricke gel dosimetry. Evaluation of influences on the measurement accuracy.
    Reichl B; Matthaei D; Richter J; Haase A
    Strahlenther Onkol; 1996 Jun; 172(6):312-9. PubMed ID: 8677503
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.