These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30213988)

  • 1. A novel method for detection of camellia oil adulteration based on time-resolved emission fluorescence.
    Chen H; Chen B; Lu D
    Sci Rep; 2018 Sep; 8(1):13784. PubMed ID: 30213988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid identification and quantification of cheaper vegetable oil adulteration in camellia oil by using excitation-emission matrix fluorescence spectroscopy combined with chemometrics.
    Wang T; Wu HL; Long WJ; Hu Y; Cheng L; Chen AQ; Yu RQ
    Food Chem; 2019 Sep; 293():348-357. PubMed ID: 31151622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multispecies Adulteration Detection of Camellia Oil by Chemical Markers.
    Dou X; Mao J; Zhang L; Xie H; Chen L; Yu L; Ma F; Wang X; Zhang Q; Li P
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29370131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synchronous fluorescence spectroscopy for determination of tahini adulteration.
    Temiz HT; Tamer U; Berkkan A; Boyaci IH
    Talanta; 2017 May; 167():557-562. PubMed ID: 28340761
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Shi T; Zhu M; Chen Y; Yan X; Chen Q; Wu X; Lin J; Xie M
    Food Chem; 2018 Mar; 242():308-315. PubMed ID: 29037694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Classification and Quantification of Camellia (
    Han J; Sun R; Zeng X; Zhang J; Xing R; Sun C; Chen Y
    Molecules; 2020 Apr; 25(9):. PubMed ID: 32349404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Model Optimization of Ternary System Adulteration Detection in Camellia Oil Based on Visible/Near Infrared Spectroscopy].
    Mo XX; Zhou Y; Sun T; Wu YQ; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Dec; 36(12):3881-4. PubMed ID: 30235404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of camellia oil using FT-IR spectroscopy and chemometrics based on both isolated unsaponifiables and vegetable oils.
    He W; Lei T
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117839. PubMed ID: 31812560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent analysis of excitation-emission matrix fluorescence fingerprint to identify and quantify adulteration in camellia oil based on machine learning.
    Chen AQ; Wu HL; Wang T; Wang XZ; Sun HB; Yu RQ
    Talanta; 2023 Jan; 251():123733. PubMed ID: 35940112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synchronous front-face fluorescence spectroscopy for authentication of the adulteration of edible vegetable oil with refined used frying oil.
    Tan J; Li R; Jiang ZT; Tang SH; Wang Y; Shi M; Xiao YQ; Jia B; Lu TX; Wang H
    Food Chem; 2017 Feb; 217():274-280. PubMed ID: 27664635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of camellia oil adulteration using chemometrics based on fatty acids GC fingerprints and phytosterols GC-MS fingerprints.
    Shi T; Wu G; Jin Q; Wang X
    Food Chem; 2021 Aug; 352():129422. PubMed ID: 33714164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid detection of authenticity and adulteration of walnut oil by FTIR and fluorescence spectroscopy: a comparative study.
    Li B; Wang H; Zhao Q; Ouyang J; Wu Y
    Food Chem; 2015 Aug; 181():25-30. PubMed ID: 25794716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Quality analysis of olive oil and quantification detection of adulteration in olive oil by near-infrared spectrometry and chemometrics].
    Zhuang XL; Xiang YH; Qiang H; Zhang ZY; Zou MQ; Zhang XF
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Apr; 30(4):933-6. PubMed ID: 20545134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fusion of near-infrared and fluorescence spectroscopy for untargeted fraud detection of Chinese tea seed oil using chemometric methods.
    Hu O; Chen J; Gao P; Li G; Du S; Fu H; Shi Q; Xu L
    J Sci Food Agric; 2019 Mar; 99(5):2285-2291. PubMed ID: 30324617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effect of Optical Length on Detection Accuracy of Camellia Oil Adulteration by Near Infrared Spectroscopy].
    Sun T; Wu YQ; Xu P; Wen ZC; Hu T; Liu MH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1894-8. PubMed ID: 26717747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous determination of carbendazim and chlorothalonil pesticide residues in peanut oil using excitation-emission matrix fluorescence coupled with three-way calibration method.
    Yuan YY; Wang ST; Cheng Q; Kong DM; Che XG
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Sep; 220():117088. PubMed ID: 31158606
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid identification of peanut oil adulteration by near infrared spectroscopy and chemometrics.
    Peng Q; Feng X; Chen J; Meng K; Zheng H; Zhang L; Chen X; Xie G
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 321():124690. PubMed ID: 38909556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid detection of peanut oil adulteration using low-field nuclear magnetic resonance and chemometrics.
    Zhu W; Wang X; Chen L
    Food Chem; 2017 Feb; 216():268-74. PubMed ID: 27596419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient authentication of edible oils by FTIR spectroscopy coupled with chemometrics.
    Ye Q; Meng X
    Food Chem; 2022 Aug; 385():132661. PubMed ID: 35299015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment and evaluation of multiple adulteration detection of camellia oil by mixture design.
    Dou X; Zhang L; Chen Z; Wang X; Ma F; Yu L; Mao J; Li P
    Food Chem; 2023 Apr; 406():135050. PubMed ID: 36462349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.