These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 30214052)
21. Overcoming the Challenges of Enzyme Evolution To Adapt Phosphotriesterase for V-Agent Decontamination. Bigley AN; Desormeaux E; Xiang DF; Bae SY; Harvey SP; Raushel FM Biochemistry; 2019 Apr; 58(15):2039-2053. PubMed ID: 30893549 [TBL] [Abstract][Full Text] [Related]
22. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. Elias M; Dupuy J; Merone L; Mandrich L; Porzio E; Moniot S; Rochu D; Lecomte C; Rossi M; Masson P; Manco G; Chabriere E J Mol Biol; 2008 Jun; 379(5):1017-28. PubMed ID: 18486146 [TBL] [Abstract][Full Text] [Related]
23. SacPox from the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius is a proficient lactonase. Bzdrenga J; Hiblot J; Gotthard G; Champion C; Elias M; Chabriere E BMC Res Notes; 2014 Jun; 7():333. PubMed ID: 24894602 [TBL] [Abstract][Full Text] [Related]
24. Analysis of Nerve Agent Metabolites from Hair for Long-Term Verification of Nerve Agent Exposure. Appel AS; McDonough JH; McMonagle JD; Logue BA Anal Chem; 2016 Jun; 88(12):6523-30. PubMed ID: 27161086 [TBL] [Abstract][Full Text] [Related]
25. Immobilization of active human carboxylesterase 1 in biomimetic silica nanoparticles. Edwards JS; Kumbhar A; Roberts A; Hemmert AC; Edwards CC; Potter PM; Redinbo MR Biotechnol Prog; 2011; 27(3):863-9. PubMed ID: 21509954 [TBL] [Abstract][Full Text] [Related]
26. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitrophenyl-substituted organophosphate nerve agents. Lei Y; Mulchandani P; Wang J; Chen W; Mulchandani A Environ Sci Technol; 2005 Nov; 39(22):8853-7. PubMed ID: 16323786 [TBL] [Abstract][Full Text] [Related]
27. Nanostructured photoelectrochemical biosensor for highly sensitive detection of organophosphorous pesticides. Li X; Zheng Z; Liu X; Zhao S; Liu S Biosens Bioelectron; 2015 Feb; 64():1-5. PubMed ID: 25173731 [TBL] [Abstract][Full Text] [Related]
28. A mixture of three engineered phosphotriesterases enables rapid detoxification of the entire spectrum of known threat nerve agents. Despotović D; Aharon E; Dubovetskyi A; Leader H; Ashani Y; Tawfik DS Protein Eng Des Sel; 2019 Dec; 32(4):169-174. PubMed ID: 31612205 [TBL] [Abstract][Full Text] [Related]
29. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. Alves NJ; Moore M; Johnson BJ; Dean SN; Turner KB; Medintz IL; Walper SA ACS Appl Mater Interfaces; 2018 May; 10(18):15712-15719. PubMed ID: 29672020 [TBL] [Abstract][Full Text] [Related]
30. Biocatalytic membrane reactor development for organophosphates degradation. Vitola G; Mazzei R; Poerio T; Porzio E; Manco G; Perrotta I; Militano F; Giorno L J Hazard Mater; 2019 Mar; 365():789-795. PubMed ID: 30476802 [TBL] [Abstract][Full Text] [Related]
31. QM/MM and MM MD simulations on decontamination of the V-type nerve agent VX by phosphotriesterase: toward a comprehensive understanding of steroselectivity and activity. Fan F; Zheng Y; Fu Y; Zhang Y; Zheng H; Lyu C; Chen L; Huang J; Cao Z Phys Chem Chem Phys; 2022 May; 24(18):10933-10943. PubMed ID: 35466335 [TBL] [Abstract][Full Text] [Related]
32. Reversed enantioselectivity of diisopropyl fluorophosphatase against organophosphorus nerve agents by rational design. Melzer M; Chen JC; Heidenreich A; Gäb J; Koller M; Kehe K; Blum MM J Am Chem Soc; 2009 Dec; 131(47):17226-32. PubMed ID: 19894712 [TBL] [Abstract][Full Text] [Related]
33. Insights in detection and analysis of organophosphates using organophosphorus acid anhydrolases (OPAA) enzyme-based biosensors. Vyas T; Singh V; Kodgire P; Joshi A Crit Rev Biotechnol; 2023 Jun; 43(4):521-539. PubMed ID: 35504858 [TBL] [Abstract][Full Text] [Related]
34. Enhancing the promiscuous phosphotriesterase activity of a thermostable lactonase (GkaP) for the efficient degradation of organophosphate pesticides. Zhang Y; An J; Ye W; Yang G; Qian ZG; Chen HF; Cui L; Feng Y Appl Environ Microbiol; 2012 Sep; 78(18):6647-55. PubMed ID: 22798358 [TBL] [Abstract][Full Text] [Related]
35. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase. Jacquet P; Hiblot J; Daudé D; Bergonzi C; Gotthard G; Armstrong N; Chabrière E; Elias M Sci Rep; 2017 Dec; 7(1):16745. PubMed ID: 29196634 [TBL] [Abstract][Full Text] [Related]
36. Variants of Phosphotriesterase for the Enhanced Detoxification of the Chemical Warfare Agent VR. Bigley AN; Mabanglo MF; Harvey SP; Raushel FM Biochemistry; 2015 Sep; 54(35):5502-12. PubMed ID: 26274608 [TBL] [Abstract][Full Text] [Related]
37. Whole cell-enzyme hybrid amperometric biosensor for direct determination of organophosphorous nerve agents with p-nitrophenyl substituent. Lei Y; Mulchandani P; Chen W; Wang J; Mulchandani A Biotechnol Bioeng; 2004 Mar; 85(7):706-13. PubMed ID: 14991648 [TBL] [Abstract][Full Text] [Related]
38. Engineering of a phosphotriesterase with improved stability and enhanced activity for detoxification of the pesticide metabolite malaoxon. Job L; Köhler A; Testanera M; Escher B; Worek F; Skerra A Protein Eng Des Sel; 2023 Jan; 36():. PubMed ID: 37941439 [TBL] [Abstract][Full Text] [Related]
39. Biosensor-controlled degradation of chlorpyrifos and chlorfenvinfos using a phosphotriesterase-based detoxification column. Istamboulie G; Durbiano R; Fournier D; Marty JL; Noguer T Chemosphere; 2010 Jan; 78(1):1-6. PubMed ID: 19906400 [TBL] [Abstract][Full Text] [Related]
40. Efficient immobilization of acetylcholinesterase onto amino functionalized carbon nanotubes for the fabrication of high sensitive organophosphorus pesticides biosensors. Yu G; Wu W; Zhao Q; Wei X; Lu Q Biosens Bioelectron; 2015 Jun; 68():288-294. PubMed ID: 25594160 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]