These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 30214414)
1. Engleman EA; Steagall KB; Bredhold KE; Breach M; Kline HL; Bell RL; Katner SN; Neal-Beliveau BS Front Physiol; 2018; 9():1200. PubMed ID: 30214414 [TBL] [Abstract][Full Text] [Related]
2. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction. Engleman EA; Katner SN; Neal-Beliveau BS Prog Mol Biol Transl Sci; 2016; 137():229-52. PubMed ID: 26810004 [TBL] [Abstract][Full Text] [Related]
3. Caenorhabditis elegans as a model system to identify therapeutics for alcohol use disorders. Katner SN; Bredhold KE; Steagall KB; Bell RL; Neal-Beliveau BS; Cheong MC; Engleman EA Behav Brain Res; 2019 Jun; 365():7-16. PubMed ID: 30802531 [TBL] [Abstract][Full Text] [Related]
4. Chemosensory cue conditioning with stimulants in a Caenorhabditis elegans animal model of addiction. Musselman HN; Neal-Beliveau B; Nass R; Engleman EA Behav Neurosci; 2012 Jun; 126(3):445-56. PubMed ID: 22642886 [TBL] [Abstract][Full Text] [Related]
5. Embryonic Methamphetamine Exposure Inhibits Methamphetamine Cue Conditioning and Reduces Dopamine Concentrations in Adult N2 Caenorhabditis elegans. Katner SN; Neal-Beliveau BS; Engleman EA Dev Neurosci; 2016; 38(2):139-49. PubMed ID: 27233671 [TBL] [Abstract][Full Text] [Related]
6. Caenorhabditis Elegans Exhibits Morphine Addiction-like Behavior via the Opioid-like Receptor NPR-17. Ide S; Kunitomo H; Iino Y; Ikeda K Front Pharmacol; 2021; 12():802701. PubMed ID: 35046825 [TBL] [Abstract][Full Text] [Related]
7. Nicotine-motivated behavior in Caenorhabditis elegans requires the nicotinic acetylcholine receptor subunits acr-5 and acr-15. Sellings L; Pereira S; Qian C; Dixon-McDougall T; Nowak C; Zhao B; Tyndale RF; van der Kooy D Eur J Neurosci; 2013 Mar; 37(5):743-56. PubMed ID: 23351035 [TBL] [Abstract][Full Text] [Related]
8. Food preference-based screening method for identification of effectors of substance use disorders using Caenorhabditis elegans. Kim AT; Li S; Kim Y; You YJ; Park Y Life Sci; 2024 May; 345():122580. PubMed ID: 38514005 [TBL] [Abstract][Full Text] [Related]
9. Effect of the kappa opioid agonist R-84760 on cocaine-induced increases in striatal dopamine levels and cocaine-induced place preference in C57BL/6J mice. Zhang Y; Butelman ER; Schlussman SD; Ho A; Kreek MJ Psychopharmacology (Berl); 2004 Apr; 173(1-2):146-52. PubMed ID: 14712342 [TBL] [Abstract][Full Text] [Related]
10. Caenorhabditis elegans for opioid addiction research. Ide S; Ikeda K Curr Opin Neurobiol; 2024 Oct; 88():102914. PubMed ID: 39236640 [TBL] [Abstract][Full Text] [Related]
11. Differential effects of trihexyphenidyl on place preference conditioning and locomotor stimulant activity of cocaine and methamphetamine. Shimosato K; Watanabe S; Kitayama S Naunyn Schmiedebergs Arch Pharmacol; 2001 Jul; 364(1):74-80. PubMed ID: 11485042 [TBL] [Abstract][Full Text] [Related]
12. Naltrexone attenuation of conditioned but not primary reinforcement of nicotine in rats. Liu X; Palmatier MI; Caggiula AR; Sved AF; Donny EC; Gharib M; Booth S Psychopharmacology (Berl); 2009 Mar; 202(4):589-98. PubMed ID: 18807246 [TBL] [Abstract][Full Text] [Related]
13. Addiction research in a simple animal model: the nematode Caenorhabditis elegans. Schafer WR Neuropharmacology; 2004; 47 Suppl 1():123-31. PubMed ID: 15464131 [TBL] [Abstract][Full Text] [Related]
14. Naltrexone and nalmefene attenuate cocaine place preference in male mice. Windisch KA; Reed B; Kreek MJ Neuropharmacology; 2018 Sep; 140():174-183. PubMed ID: 30048644 [TBL] [Abstract][Full Text] [Related]
15. Caenorhabditis elegans as a model animal for investigating fungal pathogenesis. Madende M; Albertyn J; Sebolai O; Pohl CH Med Microbiol Immunol; 2020 Feb; 209(1):1-13. PubMed ID: 31555911 [TBL] [Abstract][Full Text] [Related]
16. Simultaneous monitoring of conditioned place preference and locomotor sensitization following repeated administration of cocaine and methamphetamine. Shimosato K; Ohkuma S Pharmacol Biochem Behav; 2000 Jun; 66(2):285-92. PubMed ID: 10880680 [TBL] [Abstract][Full Text] [Related]
17. Naltrexone attenuates amphetamine-induced locomotor sensitization in the rat. Häggkvist J; Björkholm C; Steensland P; Lindholm S; Franck J; Schilström B Addict Biol; 2011 Jan; 16(1):20-9. PubMed ID: 20192948 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of naltrexone on relapse in methamphetamine self-administration and conditioned place preference in rats. Guo LK; Wang ZY; Lu GY; Wu N; Dong GM; Ma CM; Zhang RL; Song R; Li J Eur J Pharmacol; 2019 Dec; 865():172671. PubMed ID: 31542477 [TBL] [Abstract][Full Text] [Related]
19. Ghrelin Receptor Antagonism of Methamphetamine-Induced Conditioned Place Preference and Intravenous Self-Administration in Rats. Havlickova T; Charalambous C; Lapka M; Puskina N; Jerabek P; Sustkova-Fiserova M Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30261633 [TBL] [Abstract][Full Text] [Related]
20. Concentration- and time-dependent behavioral changes in Caenorhabditis elegans after exposure to nicotine. Sobkowiak R; Kowalski M; Lesicki A Pharmacol Biochem Behav; 2011 Sep; 99(3):365-70. PubMed ID: 21624385 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]