These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 3021444)

  • 1. In vitro effects of halothane on lymphocytes.
    Ferrero E; Ferrero ME; Marni A; Zocchi MR; Stella L; Rugarli C; Tiengo M
    Eur J Anaesthesiol; 1986 Jul; 3(4):321-30. PubMed ID: 3021444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of halothane on the cyclic 3',5'-adenosine monophosphate enzyme system in human platelets.
    Walter F; Vulliemoz Y; Verosky Y; Triner L
    Anesth Analg; 1980 Nov; 59(11):856-61. PubMed ID: 6252800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of effect of halothane on E, EA, and EAC rosette formation and cyclic AMP level of human lymphocytes.
    Ryhänen P; Karppanen H; Yrjänheikki E; Hollmén A
    Med Biol; 1978 Jun; 56(3):144-7. PubMed ID: 210335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of human T lymphocyte surface antigen mobility by purinergic receptors.
    Kammer GM; Rudolph SA
    J Immunol; 1984 Dec; 133(6):3298-302. PubMed ID: 6092471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunomodulating effects of halothane in mice.
    Atallah MM; Motawea AA; el-Chennawy FA; Attallah AF
    Eur J Anaesthesiol; 1991 May; 8(3):239-44. PubMed ID: 1874221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of oxidant injury on the lymphocyte membrane and functions.
    Kraut EH; Sagone AL
    J Lab Clin Med; 1981 Nov; 98(5):697-703. PubMed ID: 6457885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphodiesterase profile of human B lymphocytes from normal and atopic donors and the effects of PDE inhibition on B cell proliferation.
    Gantner F; Götz C; Gekeler V; Schudt C; Wendel A; Hatzelmann A
    Br J Pharmacol; 1998 Mar; 123(6):1031-8. PubMed ID: 9559883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrocortisone and human lymphocytes: increases in cyclic adenosine 3':5'-monophosphate and potentiation of adenylate cyclase-activating agents.
    Marone G; Lichtenstein LM; Plaut M
    J Pharmacol Exp Ther; 1980 Nov; 215(2):469-78. PubMed ID: 6255128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two novel stimuli of cyclic adenosine 3',5'-monophosphate (cAMP) in human lymphocytes.
    Atkinson JP; Wedner HJ; Parker CW
    J Immunol; 1975 Oct; 115(4):1023-7. PubMed ID: 170334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Valproate activates phosphodiesterase-mediated cAMP degradation: relevance to C6 glioma G1 phase progression.
    Gallagher HC; Bacon CL; Odumeru OA; Gallagher KF; Fitzpatrick T; Regan CM
    Neurotoxicol Teratol; 2004; 26(1):73-81. PubMed ID: 15001216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of adrenaline and glucocorticoids on monocyte cAMP-specific phosphodiesterase (PDE4) in a monocytic cell line.
    Delgado M; Fernández-Alfonso MS; Fuentes A
    Arch Dermatol Res; 2002 Jul; 294(4):190-7. PubMed ID: 12111350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of melatonin on chicken lymphocytes in vitro: involvement of membrane receptors.
    Markowska M; Mrozkowiak A; Skwarlo-Sonta K
    Neuro Endocrinol Lett; 2002 Apr; 23 Suppl 1():67-72. PubMed ID: 12019355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coordinated regulation in human T cells of nucleotide-hydrolyzing ecto-enzymatic activities, including CD38 and PC-1. Possible role in the recycling of nicotinamide adenine dinucleotide metabolites.
    Deterre P; Gelman L; Gary-Gouy H; Arrieumerlou C; Berthelier V; Tixier JM; Ktorza S; Goding J; Schmitt C; Bismuth G
    J Immunol; 1996 Aug; 157(4):1381-8. PubMed ID: 8759717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic nucleotide-mediated regulation of vascular smooth muscle cell cyclic nucleotide phosphodiesterase activity. Selective effect of cyclic AMP.
    Maurice DH
    Cell Biochem Biophys; 1998; 29(1-2):35-47. PubMed ID: 9631237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical and functional assessment of equine lymphocyte phosphodiesterases and protein kinase C.
    Rickards KJ; Page CP; Hamblin AS; Goode NT; Cunningham FM
    Vet Immunol Immunopathol; 2004 Apr; 98(3-4):153-65. PubMed ID: 15010224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cyclic adenosine monophosphate and the enzyme activity of its metabolism in L cells sensitive and resistant to the cytotoxic action of ethidium bromide].
    Ganelina LSh; Pleskach VA; Rubchenia AIu; Ignatova TN
    Tsitologiia; 1982 Dec; 24(12):1393-7. PubMed ID: 6297131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Halothane action on lymphocytes does not involve cyclic AMP.
    Bruce DL
    Anesthesiology; 1976 Feb; 44(2):151-4. PubMed ID: 175725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Cyclic adenosine monophosphate and myocardial lipids in fluothane anesthesia depending on the oxygen content in the inhalation mixture].
    Abidova SS; Zhukova LV
    Vopr Med Khim; 1992; 38(2):52-3. PubMed ID: 1329347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Age-related differential effects of zinc on concanavalin A-induced capping of human lymphocytes.
    Rao KM
    Exp Gerontol; 1982; 17(3):205-11. PubMed ID: 7140861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation.
    Meeker RB; Harden TK
    Mol Pharmacol; 1983 Mar; 23(2):384-92. PubMed ID: 6300648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.