These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3021449)

  • 21. Calcium inhibition of the ATP in equilibrium with [32P]Pi exchange and of net ATP synthesis catalyzed by bovine submitochondrial particles.
    Vercesi AE; Hermes-Lima M; Meyer-Fernandes JR; Vieyra A
    Biochim Biophys Acta; 1990 Oct; 1020(1):101-6. PubMed ID: 2145974
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Correlations between ATP hydrolysis, ATP synthesis, generation and utilization of delta pH in mitochondrial ATPase-ATP synthase.
    Deléage G; Penin F; Godinot C; Gautheron DC
    Biochim Biophys Acta; 1983 Dec; 725(3):464-71. PubMed ID: 6197086
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Studies on the mechanism of oxidative phosphorylation. Catalytic site cooperativity in ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1985 Nov; 260(27):11424-7. PubMed ID: 4055778
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of mechanisms of free-energy coupling and uncoupling by inhibitor titrations: theory, computer modeling and experiments.
    Petronilli V; Azzone GF; Pietrobon D
    Biochim Biophys Acta; 1988 Mar; 932(3):306-24. PubMed ID: 2450579
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Energy-induced modulation of the kinetics of oxidative phosphorylation and reverse electron transfer.
    Hekman C; Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1988 Sep; 27(19):7559-65. PubMed ID: 2905168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Partial uncoupling, or inhibition of electron transport rate, have equivalent effects on the relationship between the rate of ATP synthesis and proton-motive force in submitochondrial particles.
    Catia Sorgato M; Lippe G; Seren S; Ferguson SJ
    FEBS Lett; 1985 Feb; 181(2):323-7. PubMed ID: 2982663
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles.
    Seren S; Caporin G; Galiazzo F; Lippe G; Ferguson SJ; Sorgato MC
    Eur J Biochem; 1985 Oct; 152(2):373-9. PubMed ID: 2865136
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The native F0F1-inhibitor protein complex from beef heart mitochondria and its reconstitution in liposomes.
    Vázquez-Contreras E; Vázquez-Laslop N; Dreyfus G
    J Bioenerg Biomembr; 1995 Feb; 27(1):109-16. PubMed ID: 7629042
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The rate of ATP synthesis by submitochondrial particles can be independent of the magnitude of the protonmotive force.
    Sorgato MC; Branca D; Ferguson SJ
    Biochem J; 1980 Jun; 188(3):945-8. PubMed ID: 6258563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. MgATP-induced inhibition of the adenosine triphosphatase activity of submitochondrial particles.
    Lowe PN; Beechey RB
    Biochem J; 1981 May; 196(2):443-9. PubMed ID: 6459084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic control of mitochondrial ATP synthesis.
    LaNoue KF; Jeffries FM; Radda GK
    Biochemistry; 1986 Nov; 25(23):7667-75. PubMed ID: 3026457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on the mechanism of oxidative phosphorylation. ATP synthesis by submitochondrial particles inhibited at F0 by venturicidin and organotin compounds.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1993 Mar; 268(9):6168-73. PubMed ID: 8454592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The protonmotive force in bovine heart submitochondrial particles. Magnitude, sites of generation and comparison with the phosphorylation potential.
    Sorgato MC; Ferguson SJ; Kell DB; John P
    Biochem J; 1978 Jul; 174(1):237-56. PubMed ID: 212021
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstitution of ATP synthetase on a collagen membrane that can synthesize ATP using a pH gradient.
    Blanchy B; Godinot C; Gautheron DC
    Methods Enzymol; 1979; 55():742-8. PubMed ID: 37408
    [No Abstract]   [Full Text] [Related]  

  • 35. [Reasons causing a lag period in the oxidative phosphorylation process. Isn't ATP an internal uncoupler of ATP synthetase?].
    Bronnikov GE; Vinogradova SO; Mezentseva VS; Samoĭlova EV
    Biofizika; 1999; 44(3):465-73. PubMed ID: 10439862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mitochondrial oxidative phosphorylation and respiratory chain: review.
    Gautheron DC
    J Inherit Metab Dis; 1984; 7 Suppl 1():57-61. PubMed ID: 6153061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Electron spin resonance of phosphorylating and non-phosphorylating submitochondrial particles].
    Nedelina OS; Vishnevskiĭ ES; Brzhevskaia ON; Sheksheev EM; Kaiushin LP
    Biofizika; 1982; 27(3):463-6. PubMed ID: 6284252
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of the 29,000-dalton protein and its relevance to oligomycin-sensitive 32Pi-ATP exchange in bovine heart electron transport particles.
    Joshi S; Torok K
    J Biol Chem; 1984 Oct; 259(20):12742-8. PubMed ID: 6238028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydrolysis of ITP generates a membrane potential in submitochondrial particles.
    Sorgato MC; Galiazzo F; Valente M; Cavallini L; Ferguson SJ
    Biochim Biophys Acta; 1982 Aug; 681(2):319-22. PubMed ID: 6214275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.