These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 3021449)

  • 41. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis.
    Penefsky HS
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1589-93. PubMed ID: 2858849
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermodynamics of the electrochemical proton gradient in bovine heart submitochondrial particles.
    Bashford CL; Thayer WS
    J Biol Chem; 1977 Dec; 252(23):8459-63. PubMed ID: 21873
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of pyridine nucleotides on ATP synthesis and hydrolysis by the mitochondrial ATPase.
    Baizabal-Aguirre VM; Behrens MI; Gómez-Puyou A; Tuena de Gómez-Puyou M
    Biochem Int; 1990 Nov; 22(4):677-84. PubMed ID: 2150308
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Isolation of totally inverted submitochondrial particles by sonication of beef heart mitochondria.
    Harmon HJ
    J Bioenerg Biomembr; 1982 Dec; 14(5-6):377-86. PubMed ID: 6298196
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Energetics of ATP-driven reverse electron transfer from cytochrome c to fumarate and from succinate to NAD in submitochondrial particles.
    Scholes TA; Hinkle PC
    Biochemistry; 1984 Jul; 23(14):3341-5. PubMed ID: 6087893
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The electrogenic nature of ADP/ATP transport in inside-out submitochondrial particles.
    Villiers C; Michejda JW; Block M; Lauquin GJ; Vignais PV
    Biochim Biophys Acta; 1979 Apr; 546(1):157-70. PubMed ID: 36139
    [No Abstract]   [Full Text] [Related]  

  • 47. Mitochondrial adenosinetriphosphatase inhibitor protein: reversible interaction with complex V (ATP synthetase complex).
    Galante YM; Wong SY; Hatefi Y
    Biochemistry; 1981 Apr; 20(9):2671-8. PubMed ID: 6263316
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Energy-dependent formation of free ATP in yeast submitochondrial particles, and its stimulation by oligomycin.
    Lundin M; Pereira da Silva L; Baltscheffsky H
    Biochim Biophys Acta; 1987 Mar; 890(3):279-85. PubMed ID: 3545293
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Interaction of ATPase from submitochondrial fragments and a natural inhibitor protein during delta-mu-H+ generation on a membrane].
    Vasil'eva EA; Panchenko MV; Vinogradov AD
    Biokhimiia; 1989 Sep; 54(9):1490-8. PubMed ID: 2531616
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of denaturants on multisite and unisite ATP hydrolysis by bovine heart submitochondrial particles with and without inhibitor protein.
    de Gómez-Puyou MT; Domínguez-Ramírez L; Pérez-Hernández G; Gómez-Puyou A
    Arch Biochem Biophys; 2005 Jul; 439(1):129-37. PubMed ID: 15950171
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Anomalous oxygen-18 exchange during ATP synthesis in oxidative phosphorylation.
    Sines JJ; Hackney DD
    Biochemistry; 1986 Oct; 25(20):6144-9. PubMed ID: 3790511
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Kinetic mechanism of Fo x F1 mitochondrial ATPase: Mg2+ requirement for Mg x ATP hydrolysis.
    Syroeshkin AV; Galkin MA; Sedlov AV; Vinogradov AD
    Biochemistry (Mosc); 1999 Oct; 64(10):1128-37. PubMed ID: 10561559
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Studies on the mechanism of oxidative phosphorylation. Positive cooperativity in ATP synthesis.
    Matsuno-Yagi A; Hatefi Y
    J Biol Chem; 1990 Jan; 265(1):82-8. PubMed ID: 2294123
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium-binding ATPase inhibitor protein of bovine heart mitochondria. Role in ATP synthesis and effect of Ca2+.
    Yamada EW; Huzel NJ
    Biochemistry; 1989 Dec; 28(25):9714-8. PubMed ID: 2692714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Inactive to active transitions of the mitochondrial ATPase complex as controlled by the ATPase inhibitor.
    Gómez-Puyou A; de Gómez-Puyou MT; Ernster L
    Biochim Biophys Acta; 1979 Aug; 547(2):252-7. PubMed ID: 157162
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inhibitory chemical modifications of F1-ATPase: effects on the kinetics of adenosine 5'-triphosphate synthesis and hydrolysis in reconstituted systems.
    Matsuno-Yagi A; Hatefi Y
    Biochemistry; 1984 Jul; 23(15):3508-14. PubMed ID: 6235851
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mitochondrial-catalyzed ATP hydrolysis in highly enriched [18O]H2O. Frequency distributions of 18O-labelled Pi species.
    Mitchell RA; Lamos CM; Russo JA
    Biochim Biophys Acta; 1980 Oct; 592(3):406-14. PubMed ID: 7417414
    [No Abstract]   [Full Text] [Related]  

  • 58. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase.
    Solaini G; Tadolini B
    Biochem J; 1984 Mar; 218(2):495-9. PubMed ID: 6231925
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The binding and release of the inhibitor protein are governed independently by ATP and membrane potential in ox-heart submitochondrial vesicles.
    Lippe G; Sorgato MC; Harris DA
    Biochim Biophys Acta; 1988 Mar; 933(1):12-21. PubMed ID: 2894853
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fate of nucleotides bound to reconstituted Fo-F1 during adenosine 5'-triphosphate synthesis activation or hydrolysis: role of protein inhibitor and hysteretic inhibition.
    Penin F; Di Pietro A; Godinot C; Gautheron DC
    Biochemistry; 1988 Dec; 27(25):8969-74. PubMed ID: 2906804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.