These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30215293)

  • 1. Spinal Progenitor-Laden Bridges Support Earlier Axon Regeneration Following Spinal Cord Injury.
    Dumont CM; Munsell MK; Carlson MA; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2018 Nov; 24(21-22):1588-1602. PubMed ID: 30215293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IL-10 lentivirus-laden hydrogel tubes increase spinal progenitor survival and neuronal differentiation after spinal cord injury.
    Ciciriello AJ; Smith DR; Munsell MK; Boyd SJ; Shea LD; Dumont CM
    Biotechnol Bioeng; 2021 Jul; 118(7):2609-2625. PubMed ID: 33835500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord.
    Hoeber J; König N; Trolle C; Lekholm E; Zhou C; Pankratova S; Åkesson E; Fredriksson R; Aldskogius H; Kozlova EN
    Stem Cells Dev; 2017 Jul; 26(14):1065-1077. PubMed ID: 28562227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.
    Liu S; Sandner B; Schackel T; Nicholson L; Chtarto A; Tenenbaum L; Puttagunta R; Müller R; Weidner N; Blesch A
    Acta Biomater; 2017 Sep; 60():167-180. PubMed ID: 28735026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural stem/progenitor cell-laden microfibers promote transplant survival in a mouse transected spinal cord injury model.
    Sugai K; Nishimura S; Kato-Negishi M; Onoe H; Iwanaga S; Toyama Y; Matsumoto M; Takeuchi S; Okano H; Nakamura M
    J Neurosci Res; 2015 Dec; 93(12):1826-38. PubMed ID: 26301451
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury.
    Butenschön J; Zimmermann T; Schmarowski N; Nitsch R; Fackelmeier B; Friedemann K; Radyushkin K; Baumgart J; Lutz B; Leschik J
    Stem Cell Res Ther; 2016 Jan; 7():11. PubMed ID: 26762640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord.
    Guo X; Zahir T; Mothe A; Shoichet MS; Morshead CM; Katayama Y; Tator CH
    Cell Transplant; 2012; 21(6):1177-97. PubMed ID: 22236767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axon regeneration after spinal cord injury: insight from genetically modified mouse models.
    Lee JK; Zheng B
    Restor Neurol Neurosci; 2008; 26(2-3):175-82. PubMed ID: 18820409
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembling peptides optimize the post-traumatic milieu and synergistically enhance the effects of neural stem cell therapy after cervical spinal cord injury.
    Zweckberger K; Ahuja CS; Liu Y; Wang J; Fehlings MG
    Acta Biomater; 2016 Sep; 42():77-89. PubMed ID: 27296842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polycistronic Delivery of IL-10 and NT-3 Promotes Oligodendrocyte Myelination and Functional Recovery in a Mouse Spinal Cord Injury Model.
    Smith DR; Dumont CM; Park J; Ciciriello AJ; Guo A; Tatineni R; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2020 Jun; 26(11-12):672-682. PubMed ID: 32000627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury.
    Lu P; Gomes-Leal W; Anil S; Dobkins G; Huie JR; Ferguson AR; Graham L; Tuszynski M
    Stem Cell Reports; 2019 Jul; 13(1):105-114. PubMed ID: 31204300
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration.
    Lin L; Lin H; Bai S; Zheng L; Zhang X
    Neurochem Int; 2018 May; 115():80-84. PubMed ID: 29458076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation.
    Rodriguez-Jimenez FJ; Alastrue-Agudo A; Stojkovic M; Erceg S; Moreno-Manzano V
    Int J Mol Sci; 2015 Nov; 16(11):26608-18. PubMed ID: 26561800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-term characterization of axon regeneration and matrix changes using multiple channel bridges for spinal cord regeneration.
    Tuinstra HM; Margul DJ; Goodman AG; Boehler RM; Holland SJ; Zelivyanskaya ML; Cummings BJ; Anderson AJ; Shea LD
    Tissue Eng Part A; 2014 Mar; 20(5-6):1027-37. PubMed ID: 24168314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord reconstitution with homologous neural grafts enables robust corticospinal regeneration.
    Kadoya K; Lu P; Nguyen K; Lee-Kubli C; Kumamaru H; Yao L; Knackert J; Poplawski G; Dulin JN; Strobl H; Takashima Y; Biane J; Conner J; Zhang SC; Tuszynski MH
    Nat Med; 2016 May; 22(5):479-87. PubMed ID: 27019328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice.
    Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM
    J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Progress in the Regeneration of Spinal Cord Injuries by Induced Pluripotent Stem Cells.
    Csobonyeiova M; Polak S; Zamborsky R; Danisovic L
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.