These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
415 related articles for article (PubMed ID: 30215504)
1. Achieving a High-Performance Carbon Anode through the P-O Bond for Lithium-Ion Batteries. Tao H; Du S; Zhang F; Xiong L; Zhang Y; Ma H; Yang X ACS Appl Mater Interfaces; 2018 Oct; 10(40):34245-34253. PubMed ID: 30215504 [TBL] [Abstract][Full Text] [Related]
2. Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries. Reitz C; Breitung B; Schneider A; Wang D; von der Lehr M; Leichtweiss T; Janek J; Hahn H; Brezesinski T ACS Appl Mater Interfaces; 2016 Apr; 8(16):10274-82. PubMed ID: 26867115 [TBL] [Abstract][Full Text] [Related]
3. Nano-size porous carbon spheres as a high-capacity anode with high initial coulombic efficiency for potassium-ion batteries. Zhang H; Luo C; He H; Wu HH; Zhang L; Zhang Q; Wang H; Wang MS Nanoscale Horiz; 2020 May; 5(5):895-903. PubMed ID: 32222748 [TBL] [Abstract][Full Text] [Related]
4. N/S Co-doped Carbon Derived From Cotton as High Performance Anode Materials for Lithium Ion Batteries. Xiong J; Pan Q; Zheng F; Xiong X; Yang C; Hu D; Huang C Front Chem; 2018; 6():78. PubMed ID: 29755966 [TBL] [Abstract][Full Text] [Related]
5. An iron oxyborate Fe Ping Q; Xu B; Ma X; Tian J; Wang B Dalton Trans; 2019 Apr; 48(17):5741-5748. PubMed ID: 30973167 [TBL] [Abstract][Full Text] [Related]
6. Phosphorus-Rich CuP Kim SO; Manthiram A ACS Appl Mater Interfaces; 2017 May; 9(19):16221-16227. PubMed ID: 28447777 [TBL] [Abstract][Full Text] [Related]
7. Fast and Controllable Prelithiation of Hard Carbon Anodes for Lithium-Ion Batteries. Zhang X; Qu H; Ji W; Zheng D; Ding T; Abegglen C; Qiu D; Qu D ACS Appl Mater Interfaces; 2020 Mar; 12(10):11589-11599. PubMed ID: 32056422 [TBL] [Abstract][Full Text] [Related]
8. Engineering Ultrathin Carbon Layer on Porous Hard Carbon Boosts Sodium Storage with High Initial Coulombic Efficiency. Cheng D; Li Z; Zhang M; Duan Z; Wang J; Wang C ACS Nano; 2023 Oct; 17(19):19063-19075. PubMed ID: 37737004 [TBL] [Abstract][Full Text] [Related]
9. Nitrogen-Doped Porous Carbon Nanosheets from Eco-Friendly Eucalyptus Leaves as High Performance Electrode Materials for Supercapacitors and Lithium Ion Batteries. Mondal AK; Kretschmer K; Zhao Y; Liu H; Wang C; Sun B; Wang G Chemistry; 2017 Mar; 23(15):3683-3690. PubMed ID: 28039908 [TBL] [Abstract][Full Text] [Related]
10. Nitrogen and Phosphorus Codoped Porous Carbon Framework as Anode Material for High Rate Lithium-Ion Batteries. Ma C; Deng C; Liao X; He Y; Ma Z; Xiong H ACS Appl Mater Interfaces; 2018 Oct; 10(43):36969-36975. PubMed ID: 30273484 [TBL] [Abstract][Full Text] [Related]
11. Direct Synthesis of Carbon-Doped TiO2-Bronze Nanowires as Anode Materials for High Performance Lithium-Ion Batteries. Goriparti S; Miele E; Prato M; Scarpellini A; Marras S; Monaco S; Toma A; Messina GC; Alabastri A; De Angelis F; Manna L; Capiglia C; Zaccaria RP ACS Appl Mater Interfaces; 2015 Nov; 7(45):25139-46. PubMed ID: 26492841 [TBL] [Abstract][Full Text] [Related]
12. Unravelling the Interface Layer Formation and Gas Evolution/Suppression on a TiNb Wu X; Lou S; Cheng X; Lin C; Gao J; Ma Y; Zuo P; Du C; Gao Y; Yin G ACS Appl Mater Interfaces; 2018 Aug; 10(32):27056-27062. PubMed ID: 30035529 [TBL] [Abstract][Full Text] [Related]
13. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery. Chen A; Li C; Tang R; Yin L; Qi Y Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242 [TBL] [Abstract][Full Text] [Related]
14. Superior-capacity binder-free anode electrode for lithium-ion batteries: Co Li Q; Feng Y; Wang P; Che R Nanoscale; 2019 Mar; 11(11):5080-5093. PubMed ID: 30839963 [TBL] [Abstract][Full Text] [Related]
15. Solution Synthesis of Porous Silicon Particles as an Anode Material for Lithium Ion Batteries. Wang F; Sun L; Zi W; Zhao B; Du H Chemistry; 2019 Jul; 25(38):9071-9077. PubMed ID: 31056775 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of MoS2 @C Nanotubes Via the Kirkendall Effect with Enhanced Electrochemical Performance for Lithium Ion and Sodium Ion Batteries. Zhang X; Li X; Liang J; Zhu Y; Qian Y Small; 2016 May; 12(18):2484-91. PubMed ID: 26997521 [TBL] [Abstract][Full Text] [Related]
17. Encapsulating micro-nano Si/SiO(x) into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries. Wang J; Zhou M; Tan G; Chen S; Wu F; Lu J; Amine K Nanoscale; 2015 May; 7(17):8023-34. PubMed ID: 25865463 [TBL] [Abstract][Full Text] [Related]
18. Enhanced lithium storage performance of graphene nanoribbons doped with high content of nitrogen atoms. Qian Y; Jiang L; Ullah Z; Guan Z; Yu C; Zhu S; Chen M; Li W; Li Q; Liu L Nanotechnology; 2019 May; 30(22):225401. PubMed ID: 30716720 [TBL] [Abstract][Full Text] [Related]
19. Regulate Phosphorus Configuration in High P-Doped Hard Carbon as a Superanode for Sodium Storage. Wang X; Hou M; Shi Z; Liu X; Mizota I; Lou H; Wang B; Hou X ACS Appl Mater Interfaces; 2021 Mar; 13(10):12059-12068. PubMed ID: 33656334 [TBL] [Abstract][Full Text] [Related]
20. N-Doped 3D Interconnected Carbon Bubbles as Anode Materials for Lithium-Ion and Sodium-Ion Storage with Excellent Performance. Wang B; Li Z; Zhang J; Xia Z; Yang H; Fan M; Yu Y J Nanosci Nanotechnol; 2019 Nov; 19(11):7301-7307. PubMed ID: 31039889 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]