BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30215508)

  • 41. Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent.
    Wei D; Qian W
    Colloids Surf B Biointerfaces; 2008 Mar; 62(1):136-42. PubMed ID: 17983734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Size controllable one step synthesis of gold nanoparticles using carboxymethyl chitosan.
    Sun L; Pu S; Li J; Cai J; Zhou B; Ren G; Ma Q; Zhong L
    Int J Biol Macromol; 2019 Feb; 122():770-783. PubMed ID: 30399380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Peptide functionalized gold nanoparticles: the influence of pH on binding efficiency.
    Harrison E; Hamilton JWJ; Macias-Montero M; Dixon D
    Nanotechnology; 2017 Jul; 28(29):295602. PubMed ID: 28632139
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Orthogonal analysis of functional gold nanoparticles for biomedical applications.
    Tsai DH; Lu YF; DelRio FW; Cho TJ; Guha S; Zachariah MR; Zhang F; Allen A; Hackley VA
    Anal Bioanal Chem; 2015 Nov; 407(28):8411-22. PubMed ID: 26362156
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A solution to the PEG dilemma: efficient bioconjugation of large gold nanoparticles for biodiagnostic applications using mixed layers.
    Liu T; Thierry B
    Langmuir; 2012 Nov; 28(44):15634-42. PubMed ID: 23061489
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy.
    Tsai DH; Davila-Morris M; DelRio FW; Guha S; Zachariah MR; Hackley VA
    Langmuir; 2011 Aug; 27(15):9302-13. PubMed ID: 21726083
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice.
    Zhang G; Yang Z; Lu W; Zhang R; Huang Q; Tian M; Li L; Liang D; Li C
    Biomaterials; 2009 Apr; 30(10):1928-36. PubMed ID: 19131103
    [TBL] [Abstract][Full Text] [Related]  

  • 48. One pot synthesis of gold nanoparticles using chitosan with varying degree of deacetylation and molecular weight.
    Sun L; Li J; Cai J; Zhong L; Ren G; Ma Q
    Carbohydr Polym; 2017 Dec; 178():105-114. PubMed ID: 29050575
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Topology-Dependent Interaction of Cyclic Poly(ethylene glycol) Complexed with Gold Nanoparticles against Bovine Serum Albumin for a Colorimetric Change.
    Oziri OJ; Maeki M; Tokeshi M; Isono T; Tajima K; Satoh T; Sato SI; Yamamoto T
    Langmuir; 2022 May; 38(17):5286-5295. PubMed ID: 34878285
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The alpha-galactomannan Davanat binds galectin-1 at a site different from the conventional galectin carbohydrate binding domain.
    Miller MC; Klyosov A; Mayo KH
    Glycobiology; 2009 Sep; 19(9):1034-45. PubMed ID: 19541770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Catalytic evaluation of biocompatible chitosan-stabilized gold nanoparticles on oxidation of morin.
    Bulut O; Yilmaz MD
    Carbohydr Polym; 2021 Apr; 258():117699. PubMed ID: 33593570
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Double phase transfer of gold nanorods for surface functionalization and entrapment into PEG-based nanocarriers.
    Gentili D; Ori G; Comes Franchini M
    Chem Commun (Camb); 2009 Oct; (39):5874-6. PubMed ID: 19787126
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The unexpected effect of PEGylated gold nanoparticles on the primary function of erythrocytes.
    He Z; Liu J; Du L
    Nanoscale; 2014 Aug; 6(15):9017-24. PubMed ID: 24970029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of Thermus thermophilus ArsC enzyme and gold nanoparticles naked-eye assays speciation between As(III) and As(V).
    Politi J; Spadavecchia J; Fiorentino G; Antonucci I; Casale S; De Stefano L
    Nanotechnology; 2015 Oct; 26(43):435703. PubMed ID: 26436536
    [TBL] [Abstract][Full Text] [Related]  

  • 56. An in vitro comparison of the antioxidant activities of chitosan and green synthesized gold nanoparticles.
    Pu S; Li J; Sun L; Zhong L; Ma Q
    Carbohydr Polym; 2019 May; 211():161-172. PubMed ID: 30824076
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly(ethylene glycol)-stabilized silver nanoparticles for bioanalytical applications of SERS spectroscopy.
    Shkilnyy A; Soucé M; Dubois P; Warmont F; Saboungi ML; Chourpa I
    Analyst; 2009 Sep; 134(9):1868-72. PubMed ID: 19684912
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis of chitosan-stabilized gold nanoparticles by atmospheric plasma.
    Jin Y; Li Z; Hu L; Shi X; Guan W; Du Y
    Carbohydr Polym; 2013 Jan; 91(1):152-6. PubMed ID: 23044116
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Poly(ethylene glycol)- and carboxylate-functionalized gold nanoparticles using polymer linkages: single-step synthesis, high stability, and plasmonic detection of proteins.
    Park G; Seo D; Chung IS; Song H
    Langmuir; 2013 Nov; 29(44):13518-26. PubMed ID: 24090031
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synthesis and spectroscopic characterization of gold nanoparticles.
    Philip D
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(1):80-5. PubMed ID: 18155956
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.