BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 30215610)

  • 1. Gumpy: a Python toolbox suitable for hybrid brain-computer interfaces.
    Tayeb Z; Waniek N; Fedjaev J; Ghaboosi N; Rychly L; Widderich C; Richter C; Braun J; Saveriano M; Cheng G; Conradt J
    J Neural Eng; 2018 Dec; 15(6):065003. PubMed ID: 30215610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals.
    Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wyrm: A Brain-Computer Interface Toolbox in Python.
    Venthur B; Dähne S; Höhne J; Heller H; Blankertz B
    Neuroinformatics; 2015 Oct; 13(4):471-86. PubMed ID: 26001643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding.
    Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification.
    Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data.
    Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C
    Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Motor Imagery EEG Classification Using Capsule Networks.
    Ha KW; Jeong JW
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
    Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW
    Gigascience; 2019 May; 8(5):. PubMed ID: 30698704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching.
    Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G
    J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel deep learning approach for classification of EEG motor imagery signals.
    Tabar YR; Halici U
    J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach.
    Müller-Putz GR; Schwarz A; Pereira J; Ofner P
    Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification.
    Chiarelli AM; Croce P; Merla A; Zappasodi F
    J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware.
    Behrenbeck J; Tayeb Z; Bhiri C; Richter C; Rhodes O; Kasabov N; Espinosa-Ramos JI; Furber S; Cheng G; Conradt J
    J Neural Eng; 2019 Apr; 16(2):026014. PubMed ID: 30577030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG-based BCI system for decoding finger movements within the same hand.
    Alazrai R; Alwanni H; Daoud MI
    Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Sejdic E; Akcakaya M
    J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines.
    Lu N; Li T; Ren X; Miao H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand.
    Sonkin KM; Stankevich LA; Khomenko JG; Nagornova ZV; Shemyakina NV
    Artif Intell Med; 2015 Feb; 63(2):107-17. PubMed ID: 25547267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.