These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Validating Deep Neural Networks for Online Decoding of Motor Imagery Movements from EEG Signals. Tayeb Z; Fedjaev J; Ghaboosi N; Richter C; Everding L; Qu X; Wu Y; Cheng G; Conradt J Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626132 [TBL] [Abstract][Full Text] [Related]
3. Wyrm: A Brain-Computer Interface Toolbox in Python. Venthur B; Dähne S; Höhne J; Heller H; Blankertz B Neuroinformatics; 2015 Oct; 13(4):471-86. PubMed ID: 26001643 [TBL] [Abstract][Full Text] [Related]
4. A Channel-Projection Mixed-Scale Convolutional Neural Network for Motor Imagery EEG Decoding. Li Y; Zhang XR; Zhang B; Lei MY; Cui WG; Guo YZ IEEE Trans Neural Syst Rehabil Eng; 2019 Jun; 27(6):1170-1180. PubMed ID: 31071048 [TBL] [Abstract][Full Text] [Related]
5. BioPyC, an Open-Source Python Toolbox for Offline Electroencephalographic and Physiological Signals Classification. Appriou A; Pillette L; Trocellier D; Dutartre D; Cichocki A; Lotte F Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502629 [TBL] [Abstract][Full Text] [Related]
6. ConTraNet: A hybrid network for improving the classification of EEG and EMG signals with limited training data. Ali O; Saif-Ur-Rehman M; Glasmachers T; Iossifidis I; Klaes C Comput Biol Med; 2024 Jan; 168():107649. PubMed ID: 37980798 [TBL] [Abstract][Full Text] [Related]
7. Motor Imagery EEG Classification Using Capsule Networks. Ha KW; Jeong JW Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31252557 [TBL] [Abstract][Full Text] [Related]
8. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study. Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295 [TBL] [Abstract][Full Text] [Related]
9. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy. Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW Gigascience; 2019 May; 8(5):. PubMed ID: 30698704 [TBL] [Abstract][Full Text] [Related]
10. A hybrid BCI based on EEG and fNIRS signals improves the performance of decoding motor imagery of both force and speed of hand clenching. Yin X; Xu B; Jiang C; Fu Y; Wang Z; Li H; Shi G J Neural Eng; 2015 Jun; 12(3):036004. PubMed ID: 25834118 [TBL] [Abstract][Full Text] [Related]
11. A novel deep learning approach for classification of EEG motor imagery signals. Tabar YR; Halici U J Neural Eng; 2017 Feb; 14(1):016003. PubMed ID: 27900952 [TBL] [Abstract][Full Text] [Related]
12. From classic motor imagery to complex movement intention decoding: The noninvasive Graz-BCI approach. Müller-Putz GR; Schwarz A; Pereira J; Ofner P Prog Brain Res; 2016; 228():39-70. PubMed ID: 27590965 [TBL] [Abstract][Full Text] [Related]
13. Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. Chiarelli AM; Croce P; Merla A; Zappasodi F J Neural Eng; 2018 Jun; 15(3):036028. PubMed ID: 29446352 [TBL] [Abstract][Full Text] [Related]
14. Classification and regression of spatio-temporal signals using NeuCube and its realization on SpiNNaker neuromorphic hardware. Behrenbeck J; Tayeb Z; Bhiri C; Richter C; Rhodes O; Kasabov N; Espinosa-Ramos JI; Furber S; Cheng G; Conradt J J Neural Eng; 2019 Apr; 16(2):026014. PubMed ID: 30577030 [TBL] [Abstract][Full Text] [Related]
15. EEG-based BCI system for decoding finger movements within the same hand. Alazrai R; Alwanni H; Daoud MI Neurosci Lett; 2019 Apr; 698():113-120. PubMed ID: 30630057 [TBL] [Abstract][Full Text] [Related]
16. Towards optimal visual presentation design for hybrid EEG-fTCD brain-computer interfaces. Khalaf A; Sejdic E; Akcakaya M J Neural Eng; 2018 Oct; 15(5):056019. PubMed ID: 30021931 [TBL] [Abstract][Full Text] [Related]
17. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals. Kim JH; Bießmann F; Lee SW IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811 [TBL] [Abstract][Full Text] [Related]
18. A Deep Learning Scheme for Motor Imagery Classification based on Restricted Boltzmann Machines. Lu N; Li T; Ren X; Miao H IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):566-576. PubMed ID: 27542114 [TBL] [Abstract][Full Text] [Related]
19. Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand. Sonkin KM; Stankevich LA; Khomenko JG; Nagornova ZV; Shemyakina NV Artif Intell Med; 2015 Feb; 63(2):107-17. PubMed ID: 25547267 [TBL] [Abstract][Full Text] [Related]