These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 30215610)

  • 41. Self-paced operation of an SSVEP-Based orthosis with and without an imagery-based "brain switch:" a feasibility study towards a hybrid BCI.
    Pfurtscheller G; Solis-Escalante T; Ortner R; Linortner P; Müller-Putz GR
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):409-14. PubMed ID: 20144923
    [TBL] [Abstract][Full Text] [Related]  

  • 42. EEG-based classification of imaginary left and right foot movements using beta rebound.
    Hashimoto Y; Ushiba J
    Clin Neurophysiol; 2013 Nov; 124(11):2153-60. PubMed ID: 23757379
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sparse Bayesian Learning for End-to-End EEG Decoding.
    Wang W; Qi F; Wipf DP; Cai C; Yu T; Li Y; Zhang Y; Yu Z; Wu W
    IEEE Trans Pattern Anal Mach Intell; 2023 Dec; 45(12):15632-15649. PubMed ID: 37506000
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art.
    Arpaia P; Esposito A; Natalizio A; Parvis M
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35640554
    [No Abstract]   [Full Text] [Related]  

  • 46. IENet: a robust convolutional neural network for EEG based brain-computer interfaces.
    Du Y; Liu J
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35605585
    [No Abstract]   [Full Text] [Related]  

  • 47. Neurophysiological predictors and spectro-spatial discriminative features for enhancing SMR-BCI.
    Robinson N; Thomas KP; Vinod AP
    J Neural Eng; 2018 Dec; 15(6):066032. PubMed ID: 30277219
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Stimulus-Independent Hybrid BCI Based on Motor Imagery and Somatosensory Attentional Orientation.
    Yao L; Sheng X; Zhang D; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1674-1682. PubMed ID: 28328506
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhance decoding of pre-movement EEG patterns for brain-computer interfaces.
    Wang K; Xu M; Wang Y; Zhang S; Chen L; Ming D
    J Neural Eng; 2020 Jan; 17(1):016033. PubMed ID: 31747642
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Single-Channel Hybrid BCI System Using Motor Imagery and SSVEP.
    Ko LW; Ranga SSK; Komarov O; Chen CC
    J Healthc Eng; 2017; 2017():3789386. PubMed ID: 29065590
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of Task Complexity on Motor Imagery-Based Brain-Computer Interface.
    Mashat MEM; Lin CT; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2178-2185. PubMed ID: 31443036
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 54. LSTM-Based EEG Classification in Motor Imagery Tasks.
    Wang P; Jiang A; Liu X; Shang J; Zhang L
    IEEE Trans Neural Syst Rehabil Eng; 2018 Nov; 26(11):2086-2095. PubMed ID: 30334800
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decoding human motor activity from EEG single trials for a discrete two-dimensional cursor control.
    Huang D; Lin P; Fei DY; Chen X; Bai O
    J Neural Eng; 2009 Aug; 6(4):046005. PubMed ID: 19556679
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Asynchronous BCI based on motor imagery with automated calibration and neurofeedback training.
    Kus R; Valbuena D; Zygierewicz J; Malechka T; Graeser A; Durka P
    IEEE Trans Neural Syst Rehabil Eng; 2012 Nov; 20(6):823-35. PubMed ID: 23033330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Toward a hybrid brain-computer interface based on imagined movement and visual attention.
    Allison BZ; Brunner C; Kaiser V; Müller-Putz GR; Neuper C; Pfurtscheller G
    J Neural Eng; 2010 Apr; 7(2):26007. PubMed ID: 20332550
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.
    Koo B; Lee HG; Nam Y; Kang H; Koh CS; Shin HC; Choi S
    J Neurosci Methods; 2015 Apr; 244():26-32. PubMed ID: 24797225
    [TBL] [Abstract][Full Text] [Related]  

  • 59. EEG-Based Strategies to Detect Motor Imagery for Control and Rehabilitation.
    Ang KK; Guan C
    IEEE Trans Neural Syst Rehabil Eng; 2017 Apr; 25(4):392-401. PubMed ID: 28055887
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fast and accurate decoding of finger movements from ECoG through Riemannian features and modern machine learning techniques.
    Yao L; Zhu B; Shoaran M
    J Neural Eng; 2022 Feb; 19(1):. PubMed ID: 35078156
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.