These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 30215710)

  • 21. Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish.
    Passow CN; Greenway R; Arias-Rodriguez L; Jeyasingh PD; Tobler M
    Physiol Biochem Zool; 2015; 88(4):371-83. PubMed ID: 26052634
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular evolution and expression of oxygen transport genes in livebearing fishes (Poeciliidae) from hydrogen sulfide rich springs.
    Barts N; Greenway R; Passow CN; Arias-Rodriguez L; Kelley JL; Tobler M
    Genome; 2018 Apr; 61(4):273-286. PubMed ID: 29227751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extreme environments and the origins of biodiversity: Adaptation and speciation in sulphide spring fishes.
    Tobler M; Kelley JL; Plath M; Riesch R
    Mol Ecol; 2018 Feb; 27(4):843-859. PubMed ID: 29368386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Local adaptation and pronounced genetic differentiation in an extremophile fish, Poecilia mexicana, inhabiting a Mexican cave with toxic hydrogen sulphide.
    Plath M; Hauswaldt JS; Moll K; Tobler M; García De León FJ; Schlupp I; Tiedemann R
    Mol Ecol; 2007 Mar; 16(5):967-76. PubMed ID: 17305854
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toxic hydrogen sulfide and dark caves: life-history adaptations in a livebearing fish (Poecilia mexicana, Poeciliidae).
    Riesch R; Plath M; Schlupp I
    Ecology; 2010 May; 91(5):1494-505. PubMed ID: 20503881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters.
    Tobler M; Schlupp I; Heubel KU; Riesch R; de León FJ; Giere O; Plath M
    Extremophiles; 2006 Dec; 10(6):577-85. PubMed ID: 16788733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain.
    Roach KA; Tobler M; Winemiller KO
    Ecology; 2011 Nov; 92(11):2056-62. PubMed ID: 22164830
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parallel shifts of visual sensitivity and body coloration in replicate populations of extremophile fish.
    Owens GL; Veen T; Moxley DR; Arias-Rodriguez L; Tobler M; Rennison DJ
    Mol Ecol; 2022 Feb; 31(3):946-958. PubMed ID: 34784095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Toxic hydrogen sulphide and dark caves: pronounced male life-history divergence among locally adapted Poecilia mexicana (Poeciliidae).
    Riesch R; Plath M; Schlupp I
    J Evol Biol; 2011 Mar; 24(3):596-606. PubMed ID: 21159007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional consequences of phenotypic variation between locally adapted populations: Swimming performance and ventilation in extremophile fish.
    Camarillo H; Arias Rodriguez L; Tobler M
    J Evol Biol; 2020 Apr; 33(4):512-523. PubMed ID: 31953965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The gonadal transcriptome of the unisexual Amazon molly Poecilia formosa in comparison to its sexual ancestors, Poecilia mexicana and Poecilia latipinna.
    Schedina IM; Groth D; Schlupp I; Tiedemann R
    BMC Genomics; 2018 Jan; 19(1):12. PubMed ID: 29298680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduced opsin gene expression in a cave-dwelling fish.
    Tobler M; Coleman SW; Perkins BD; Rosenthal GG
    Biol Lett; 2010 Feb; 6(1):98-101. PubMed ID: 19740890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The loss of the hemoglobin H2S-binding function in annelids from sulfide-free habitats reveals molecular adaptation driven by Darwinian positive selection.
    Bailly X; Leroy R; Carney S; Collin O; Zal F; Toulmond A; Jollivet D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5885-90. PubMed ID: 12721359
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation of redband trout in desert and montane environments.
    Narum SR; Campbell NR; Kozfkay CC; Meyer KA
    Mol Ecol; 2010 Nov; 19(21):4622-37. PubMed ID: 20880387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Next-generation transcriptome profiling reveals insights into genetic factors contributing to growth differences and temperature adaptation in Australian populations of barramundi (Lates calcarifer).
    Newton JR; Zenger KR; Jerry DR
    Mar Genomics; 2013 Sep; 11():45-52. PubMed ID: 23948424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Population genomics of natural and experimental populations of guppies (Poecilia reticulata).
    Fraser BA; Künstner A; Reznick DN; Dreyer C; Weigel D
    Mol Ecol; 2015 Jan; 24(2):389-408. PubMed ID: 25444454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A compendium and functional characterization of mammalian genes involved in adaptation to Arctic or Antarctic environments.
    Yudin NS; Larkin DM; Ignatieva EV
    BMC Genet; 2017 Dec; 18(Suppl 1):111. PubMed ID: 29297313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional and population genomic divergence within and between two species of killifish adapted to different osmotic niches.
    Kozak GM; Brennan RS; Berdan EL; Fuller RC; Whitehead A
    Evolution; 2014 Jan; 68(1):63-80. PubMed ID: 24134703
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Parallel evolution of cox genes in H2S-tolerant fish as key adaptation to a toxic environment.
    Pfenninger M; Lerp H; Tobler M; Passow C; Kelley JL; Funke E; Greshake B; Erkoc UK; Berberich T; Plath M
    Nat Commun; 2014 May; 5():3873. PubMed ID: 24815812
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic.
    Pespeni MH; Palumbi SR
    Mol Ecol; 2013 Jul; 22(13):3580-97. PubMed ID: 23802552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.