BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

534 related articles for article (PubMed ID: 30215866)

  • 1. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver.
    Doguer C; Ha JH; Collins JF
    Compr Physiol; 2018 Sep; 8(4):1433-1461. PubMed ID: 30215866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mediators governing iron-copper interactions.
    Gulec S; Collins JF
    Annu Rev Nutr; 2014; 34():95-116. PubMed ID: 24995690
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron metabolism in copper-deficient swine.
    Lee GR; Nacht S; Lukens JN; Cartwright GE
    J Clin Invest; 1968 Sep; 47(9):2058-69. PubMed ID: 5675426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron and copper homeostasis and intestinal absorption using the Caco2 cell model.
    Linder MC; Zerounian NR; Moriya M; Malpe R
    Biometals; 2003 Mar; 16(1):145-60. PubMed ID: 12572674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Knockdown of copper-transporting ATPase 1 (Atp7a) impairs iron flux in fully-differentiated rat (IEC-6) and human (Caco-2) intestinal epithelial cells.
    Ha JH; Doguer C; Collins JF
    Metallomics; 2016 Sep; 8(9):963-972. PubMed ID: 27714044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper deficiency increases iron absorption in the rat.
    Thomas C; Oates PS
    Am J Physiol Gastrointest Liver Physiol; 2003 Nov; 285(5):G789-95. PubMed ID: 12760904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Iron absorption and metabolism.
    Anderson GJ; Frazer DM; McLaren GD
    Curr Opin Gastroenterol; 2009 Mar; 25(2):129-35. PubMed ID: 19528880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Severe Iron Metabolism Defects in Mice With Double Knockout of the Multicopper Ferroxidases Hephaestin and Ceruloplasmin.
    Fuqua BK; Lu Y; Frazer DM; Darshan D; Wilkins SJ; Dunn L; Loguinov AV; Kogan SC; Matak P; Chen H; Dunaief JL; Vulpe CD; Anderson GJ
    Cell Mol Gastroenterol Hepatol; 2018; 6(4):405-427. PubMed ID: 30182051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal DMT1 is critical for iron absorption in the mouse but is not required for the absorption of copper or manganese.
    Shawki A; Anthony SR; Nose Y; Engevik MA; Niespodzany EJ; Barrientos T; Öhrvik H; Worrell RT; Thiele DJ; Mackenzie B
    Am J Physiol Gastrointest Liver Physiol; 2015 Oct; 309(8):G635-47. PubMed ID: 26294671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of intestinal iron absorption: the mucosa takes control?
    Simpson RJ; McKie AT
    Cell Metab; 2009 Aug; 10(2):84-7. PubMed ID: 19656486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer.
    Einhorn V; Haase H; Maares M
    J Trace Elem Med Biol; 2024 Jul; 84():127459. PubMed ID: 38640745
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of the HIF2α-NCOA4 axis in enterocytes attenuates iron loading in a mouse model of hemochromatosis.
    Das NK; Jain C; Sankar A; Schwartz AJ; Santana-Codina N; Solanki S; Zhang Z; Ma X; Parimi S; Rui L; Mancias JD; Shah YM
    Blood; 2022 Apr; 139(16):2547-2552. PubMed ID: 34990508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-sensing proteins that regulate hepcidin and enteric iron absorption.
    Knutson MD
    Annu Rev Nutr; 2010 Aug; 30():149-71. PubMed ID: 20415583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ceruloplasmin homolog hephaestin and the control of intestinal iron absorption.
    Anderson GJ; Frazer DM; McKie AT; Vulpe CD
    Blood Cells Mol Dis; 2002; 29(3):367-75. PubMed ID: 12547227
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The iron-binding function of transferrin in iron metabolism.
    Aisen P; Brown EB
    Semin Hematol; 1977 Jan; 14(1):31-53. PubMed ID: 318768
    [No Abstract]   [Full Text] [Related]  

  • 16. Genetic disorders affecting proteins of iron and copper metabolism: clinical implications.
    Miyajima H
    Intern Med; 2002 Oct; 41(10):762-9. PubMed ID: 12412992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper availability contributes to iron perturbations in human nonalcoholic fatty liver disease.
    Aigner E; Theurl I; Haufe H; Seifert M; Hohla F; Scharinger L; Stickel F; Mourlane F; Weiss G; Datz C
    Gastroenterology; 2008 Aug; 135(2):680-8. PubMed ID: 18505688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dietary Iron Intake in Excess of Requirements Impairs Intestinal Copper Absorption in Sprague Dawley Rat Dams, Causing Copper Deficiency in Suckling Pups.
    Lee JK; Ha JH; Collins JF
    Biomedicines; 2021 Mar; 9(4):. PubMed ID: 33801587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-Iron Consumption Impairs Growth and Causes Copper-Deficiency Anemia in Weanling Sprague-Dawley Rats.
    Ha JH; Doguer C; Wang X; Flores SR; Collins JF
    PLoS One; 2016; 11(8):e0161033. PubMed ID: 27537180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tissue mineral concentrations are profoundly altered in neonatal piglets fed identical diets via gastric, central venous, or portal venous routes.
    Bertolo RF; Pencharz PB; Ball RO
    JPEN J Parenter Enteral Nutr; 2014 Feb; 38(2):227-35. PubMed ID: 23447505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.