These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 30216040)

  • 1. Tuning Transition-Metal Dichalcogenide Field-Effect Transistors by Spontaneous Pattern Formation of an Ultrathin Molecular Dopant Film.
    Ichimiya H; Takinoue M; Fukui A; Miura K; Yoshimura T; Ashida A; Fujimura N; Kiriya D
    ACS Nano; 2018 Oct; 12(10):10123-10129. PubMed ID: 30216040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure Mosaicity of Monolayer Transition Metal Dichalcogenides by Spontaneous Pattern Formation of Donor Molecules.
    Ichimiya H; Takinoue M; Fukui A; Yoshimura T; Ashida A; Fujimura N; Kiriya D
    ACS Appl Mater Interfaces; 2019 May; 11(17):15922-15926. PubMed ID: 30957480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patterning Superatom Dopants on Transition Metal Dichalcogenides.
    Yu J; Lee CH; Bouilly D; Han M; Kim P; Steigerwald ML; Roy X; Nuckolls C
    Nano Lett; 2016 May; 16(5):3385-9. PubMed ID: 27082448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible Semiconducting-to-Metallic Phase Transition in Chemical Vapor Deposition Grown Monolayer WSe2 and Applications for Devices.
    Ma Y; Liu B; Zhang A; Chen L; Fathi M; Shen C; Abbas AN; Ge M; Mecklenburg M; Zhou C
    ACS Nano; 2015 Jul; 9(7):7383-91. PubMed ID: 26125321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.
    Kang K; Xie S; Huang L; Han Y; Huang PY; Mak KF; Kim CJ; Muller D; Park J
    Nature; 2015 Apr; 520(7549):656-60. PubMed ID: 25925478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Barrier Formation at the Contacts of Vanadium Dioxide and Transition-Metal Dichalcogenides.
    Yamamoto M; Nouchi R; Kanki T; Nakaharai S; Hattori AN; Watanabe K; Taniguchi T; Wakayama Y; Ueno K; Tanaka H
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36871-36879. PubMed ID: 31525896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets.
    Zhao W; Ribeiro RM; Eda G
    Acc Chem Res; 2015 Jan; 48(1):91-9. PubMed ID: 25515381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Ultrathin Liquid Junction Photovoltaics Based on Transition Metal Dichalcogenides.
    Wang L; Sambur JB
    Nano Lett; 2019 May; 19(5):2960-2967. PubMed ID: 30913393
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection Role of Metal Oxides into Transition Metal Dichalcogenide Monolayers by a Direct Selenization Process.
    Lin WS; Medina H; Su TY; Lee SH; Chen CW; Chen YZ; Manikandan A; Shih YC; Yang JH; Chen JH; Wu BW; Chu KW; Chuang FC; Shieh JM; Shen CH; Chueh YL
    ACS Appl Mater Interfaces; 2018 Mar; 10(11):9645-9652. PubMed ID: 29309121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining layer number of two-dimensional flakes of transition-metal dichalcogenides by the Raman intensity from substrates.
    Li XL; Qiao XF; Han WP; Zhang X; Tan QH; Chen T; Tan PH
    Nanotechnology; 2016 Apr; 27(14):145704. PubMed ID: 26906625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Percolative switching in transition metal dichalcogenide field-effect transistors at room temperature.
    Paul T; Ghatak S; Ghosh A
    Nanotechnology; 2016 Mar; 27(12):125706. PubMed ID: 26891381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. n- and p-Type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides.
    Park HY; Dugasani SR; Kang DH; Jeon J; Jang SK; Lee S; Roh Y; Park SH; Park JH
    ACS Nano; 2014 Nov; 8(11):11603-13. PubMed ID: 25354666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer-controlled precise fabrication of ultrathin MoS
    Liu L; Huang Y; Sha J; Chen Y
    Nanotechnology; 2017 May; 28(19):195605. PubMed ID: 28323252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulating Optoelectronic Properties of Two-Dimensional Transition Metal Dichalcogenide Semiconductors by Photoinduced Charge Transfer.
    Choi J; Zhang H; Choi JH
    ACS Nano; 2016 Jan; 10(1):1671-80. PubMed ID: 26720839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and applications of mechanically exfoliated single-layer and multilayer MoS₂ and WSe₂ nanosheets.
    Li H; Wu J; Yin Z; Zhang H
    Acc Chem Res; 2014 Apr; 47(4):1067-75. PubMed ID: 24697842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance Investigation of Multilayer MoS
    Li M; Liu N; Li P; Shi J; Li G; Xi N; Wang Y; Liu L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8361-8370. PubMed ID: 28240858
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Edge Contact: Atomically Resolved Semiconductor-Metal Lateral Boundary in MoS
    Kwon H; Lee K; Heo J; Oh Y; Lee H; Appalakondaiah S; Ko W; Kim HW; Jung JW; Suh H; Min H; Jeon I; Hwang E; Hwang S
    Adv Mater; 2017 Nov; 29(41):. PubMed ID: 28922484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfer of transition-metal dichalcogenide circuits onto arbitrary substrates for flexible device applications.
    Lee H; Lee K; Kim Y; Ji H; Choi J; Kim M; Ahn JP; Kim GT
    Nanoscale; 2019 Nov; 11(45):22118-22124. PubMed ID: 31720663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air-Stable n-Doping of WSe2 by Anion Vacancy Formation with Mild Plasma Treatment.
    Tosun M; Chan L; Amani M; Roy T; Ahn GH; Taheri P; Carraro C; Ager JW; Maboudian R; Javey A
    ACS Nano; 2016 Jul; 10(7):6853-60. PubMed ID: 27294286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.