BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30216142)

  • 21. Adaptive Filter Pruning via Sensitivity Feedback.
    Zhang Y; Freris NM
    IEEE Trans Neural Netw Learn Syst; 2023 Mar; PP():. PubMed ID: 37028336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sunflower seeds classification based on sparse convolutional neural networks in multi-objective scene.
    Jin X; Zhao Y; Wu H; Sun T
    Sci Rep; 2022 Nov; 12(1):19890. PubMed ID: 36400872
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deep Neural Network Compression by In-Parallel Pruning-Quantization.
    Tung F; Mori G
    IEEE Trans Pattern Anal Mach Intell; 2020 Mar; 42(3):568-579. PubMed ID: 30561340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Representations of regular and irregular shapes by deep Convolutional Neural Networks, monkey inferotemporal neurons and human judgments.
    Kalfas I; Vinken K; Vogels R
    PLoS Comput Biol; 2018 Oct; 14(10):e1006557. PubMed ID: 30365485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Holistic CNN Compression via Low-Rank Decomposition with Knowledge Transfer.
    Lin S; Ji R; Chen C; Tao D; Luo J
    IEEE Trans Pattern Anal Mach Intell; 2019 Dec; 41(12):2889-2905. PubMed ID: 30281439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carrying Out CNN Channel Pruning in a White Box.
    Zhang Y; Lin M; Lin CW; Chen J; Wu Y; Tian Y; Ji R
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7946-7955. PubMed ID: 35157600
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PCA driven mixed filter pruning for efficient convNets.
    Ahmed W; Ansari S; Hanif M; Khalil A
    PLoS One; 2022; 17(1):e0262386. PubMed ID: 35073373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Breast cancer histopathology image classification through assembling multiple compact CNNs.
    Zhu C; Song F; Wang Y; Dong H; Guo Y; Liu J
    BMC Med Inform Decis Mak; 2019 Oct; 19(1):198. PubMed ID: 31640686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compressing Deep Networks by Neuron Agglomerative Clustering.
    Wang LN; Liu W; Liu X; Zhong G; Roy PP; Dong J; Huang K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33114078
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 1xN Pattern for Pruning Convolutional Neural Networks.
    Lin M; Zhang Y; Li Y; Chen B; Chao F; Wang M; Li S; Tian Y; Ji R
    IEEE Trans Pattern Anal Mach Intell; 2023 Apr; 45(4):3999-4008. PubMed ID: 35917571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effective Plug-Ins for Reducing Inference-Latency of Spiking Convolutional Neural Networks During Inference Phase.
    Chen X; Yuan X; Fu G; Luo Y; Yue T; Yan F; Wang Y; Pan H
    Front Comput Neurosci; 2021; 15():697469. PubMed ID: 34733147
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Robust Vehicle Detection in Aerial Images Based on Cascaded Convolutional Neural Networks.
    Zhong J; Lei T; Yao G
    Sensors (Basel); 2017 Nov; 17(12):. PubMed ID: 29186756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compact and Computationally Efficient Representation of Deep Neural Networks.
    Wiedemann S; Muller KR; Samek W
    IEEE Trans Neural Netw Learn Syst; 2020 Mar; 31(3):772-785. PubMed ID: 31150347
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploiting Sparse Self-Representation and Particle Swarm Optimization for CNN Compression.
    Niu S; Gao K; Ma P; Gao X; Zhao H; Dong J; Chen Y; Shen D
    IEEE Trans Neural Netw Learn Syst; 2023 Dec; 34(12):10266-10278. PubMed ID: 35439146
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Sparse Learning for Automatic Modulation Classification Using Recurrent Neural Networks.
    Zang K; Wu W; Luo W
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Model pruning based on filter similarity for edge device deployment.
    Wu T; Song C; Zeng P
    Front Neurorobot; 2023; 17():1132679. PubMed ID: 36937554
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ThiNet: Pruning CNN Filters for a Thinner Net.
    Luo JH; Zhang H; Zhou HY; Xie CW; Wu J; Lin W
    IEEE Trans Pattern Anal Mach Intell; 2019 Oct; 41(10):2525-2538. PubMed ID: 30040622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.