These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 30216727)

  • 1. Direct Characterization of Near-Field Coupling in Gap Plasmon-Based Metasurfaces.
    Deshpande R; Zenin VA; Ding F; Mortensen NA; Bozhevolnyi SI
    Nano Lett; 2018 Oct; 18(10):6265-6270. PubMed ID: 30216727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of gap-plasmon based metasurfaces using scanning differential heterodyne microscopy.
    Akhmedzhanov IM; Deshpande RA; Baranov DV; Bozhevolnyi SI
    Sci Rep; 2020 Aug; 10(1):13524. PubMed ID: 32782327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Optical Field Phase Carving in the Vicinity of Plasmonic Metasurfaces.
    Dagens B; Février M; Gogol P; Blaize S; Apuzzo A; Magno G; Mégy R; Lerondel G
    Nano Lett; 2016 Jul; 16(7):4014-8. PubMed ID: 27172348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning.
    Miscuglio M; Borys NJ; Spirito D; Martín-García B; Zaccaria RP; Weber-Bargioni A; Schuck PJ; Krahne R
    ACS Nano; 2019 May; 13(5):5646-5654. PubMed ID: 31021592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the design of random metasurface based devices.
    Dupré M; Hsu L; Kanté B
    Sci Rep; 2018 May; 8(1):7162. PubMed ID: 29740043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Third-order gap plasmon based metasurfaces for visible light.
    Deshpande R; Pors A; Bozhevolnyi SI
    Opt Express; 2017 May; 25(11):12508-12517. PubMed ID: 28786607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gate-Tunable Conducting Oxide Metasurfaces.
    Huang YW; Lee HW; Sokhoyan R; Pala RA; Thyagarajan K; Han S; Tsai DP; Atwater HA
    Nano Lett; 2016 Sep; 16(9):5319-25. PubMed ID: 27564012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic metasurfaces with 42.3% transmission efficiency in the visible.
    Zhang J; ElKabbash M; Wei R; Singh SC; Lam B; Guo C
    Light Sci Appl; 2019; 8():53. PubMed ID: 31231519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of > 2π reflection phase range in optical metasurfaces based on detuned gap-surface plasmon resonators.
    Damgaard-Carstensen C; Ding F; Meng C; Bozhevolnyi SI
    Sci Rep; 2020 Nov; 10(1):19031. PubMed ID: 33149166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local phase method for designing and optimizing metasurface devices.
    Hsu L; Dupré M; Ndao A; Yellowhair J; Kanté B
    Opt Express; 2017 Oct; 25(21):24974-24982. PubMed ID: 29041170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting.
    Li Z; Palacios E; Butun S; Aydin K
    Nano Lett; 2015 Mar; 15(3):1615-21. PubMed ID: 25664815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically Tunable Dielectric Resonator Metasurfaces at Visible Frequencies.
    Gutruf P; Zou C; Withayachumnankul W; Bhaskaran M; Sriram S; Fumeaux C
    ACS Nano; 2016 Jan; 10(1):133-41. PubMed ID: 26617198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Element decoupling of 7T dipole body arrays by EBG metasurface structures: Experimental verification.
    Hurshkainen AA; Derzhavskaya TA; Glybovski SB; Voogt IJ; Melchakova IV; van den Berg CAT; Raaijmakers AJE
    J Magn Reson; 2016 Aug; 269():87-96. PubMed ID: 27262656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.
    D' Archangel J; Tucker E; Kinzel E; Muller EA; Bechtel HA; Martin MC; Raschke MB; Boreman G
    Opt Express; 2013 Jul; 21(14):17150-60. PubMed ID: 23938562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scattered beam control of encoded metasurface based on near-field coupling effects of elements.
    Zhao T; Zhang P; Fang B; Li C; Hong Z; Tang Y; Yu M; Jing X
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123535. PubMed ID: 37862839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colloidal metasurfaces displaying near-ideal and tunable light absorbance in the infrared.
    Rozin MJ; Rosen DA; Dill TJ; Tao AR
    Nat Commun; 2015 Jun; 6():7325. PubMed ID: 26099835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metasurfaces with continuous ridges for inverse energy flux generation.
    Degtyarev S; Savelyev D; Khonina S; Kazanskiy N
    Opt Express; 2019 May; 27(11):15129-15135. PubMed ID: 31163713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique.
    Arbabi A; Arbabi E; Mansouree M; Han S; Kamali SM; Horie Y; Faraon A
    Sci Rep; 2020 Apr; 10(1):7124. PubMed ID: 32346135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Space Mapping of the Chiral Near-Field Distributions in Spiral Antennas and Planar Metasurfaces.
    Schnell M; Sarriugarte P; Neuman T; Khanikaev AB; Shvets G; Aizpurua J; Hillenbrand R
    Nano Lett; 2016 Jan; 16(1):663-70. PubMed ID: 26666399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmonic metasurfaces for efficient phase control in reflection.
    Pors A; Bozhevolnyi SI
    Opt Express; 2013 Nov; 21(22):27438-51. PubMed ID: 24216965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.