These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 30216782)

  • 1. Designing a tunable acoustic resonator based on defect modes, stimulated by selectively biased PZT rods in a 2D phononic crystal.
    Shakeri A; Darbari S; Moravvej-Farshi MK
    Ultrasonics; 2019 Feb; 92():8-12. PubMed ID: 30216782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality Factor Improvement of a Thin-Film Piezoelectric-on-Silicon Resonator Using a Radial Alternating Material Phononic Crystal.
    Zhu C; Su M; Workie TB; Tang P; Ye C; Bao JF
    Micromachines (Basel); 2023 Dec; 14(12):. PubMed ID: 38138410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Material Radial Phononic Crystals to Improve the Quality Factor of Piezoelectric MEMS Resonators.
    Yang Q; Gao T; Zhu C; Li L
    Micromachines (Basel); 2023 Dec; 15(1):. PubMed ID: 38258139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation of the Energy Harvesting Capabilities of a Novel Three-Dimensional Super-Cell Phononic Crystal with a Local Resonance Structure.
    Xiang H; Chai Z; Kou W; Zhong H; Xiang J
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38257453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locally Resonant Phononic Crystals at Low frequencies Based on Porous SiC Multilayer.
    Mehaney A; Ahmed AM
    Sci Rep; 2019 Oct; 9(1):14767. PubMed ID: 31611574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slow sound mode prediction and band structure calculation in 1D phononic crystal nanobeams using an artificial neural network.
    Hsiao FL; Yang YT; Lin WK; Tsai YP
    Sci Prog; 2024; 107(3):368504241272461. PubMed ID: 39109937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of Vibrational Modes Revealing a Strong and Tunable Coupling in Two Juxtaposed 3R-WSe
    Chiout A; Brochard-Richard C; Oehler F; Ouerghi A; Chaste J
    Nano Lett; 2024 Aug; 24(33):10148-10154. PubMed ID: 39136291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double defects-induced elastic wave coupling and energy localization in a phononic crystal.
    Jo SH; Shin YC; Choi W; Yoon H; Youn BD; Kim M
    Nano Converg; 2021 Sep; 8(1):27. PubMed ID: 34529160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of Transient Time Response as a Measure to Characterize Phononic Crystal Sensors.
    Villa-Arango S; Betancur D; Torres R; Kyriacou P
    Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30366380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring regenerative coupling in phononic crystals for room temperature quantum optomechanics.
    Weituschat LM; Castro I; Colomar I; Everly C; Postigo PA; Ramos D
    Sci Rep; 2024 May; 14(1):12330. PubMed ID: 38811848
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phononic-Crystal-Based SAW Magnetic-Field Sensors.
    Samadi M; Schmalz J; Meyer JM; Lofink F; Gerken M
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acoustic radiation-free surface phononic crystal resonator for in-liquid low-noise gravimetric detection.
    Gao F; Bermak A; Benchabane S; Robert L; Khelif A
    Microsyst Nanoeng; 2021; 7():8. PubMed ID: 33489307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable characteristics of low-frequency bandgaps in two-dimensional multivibrator phononic crystal plates under prestrain.
    Zhu HF; Sun XW; Song T; Wen XD; Liu XX; Feng JS; Liu ZJ
    Sci Rep; 2021 Apr; 11(1):8389. PubMed ID: 33863986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fano resonance in one-dimensional quasiperiodic topological phononic crystals towards a stable and high-performance sensing tool.
    Almawgani AHM; Makhlouf Fathy H; E Alfassam H; M El-Sherbeeny A; Hajjiah A; A Elsayed H; R Abukhadra M; Al Zoubi W; Semeda R; Ismail Fathy M; A H Al-Athwary A; Mehaney A
    Sci Rep; 2024 May; 14(1):12067. PubMed ID: 38802403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bandgap Calculation and Experimental Analysis of Piezoelectric Phononic Crystals Based on Partial Differential Equations.
    Song C; Han Y; Jiang Y; Xie M; Jiang Y; Tang K
    Materials (Basel); 2024 Aug; 17(15):. PubMed ID: 39124444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Band gap characteristics of new composite multiple locally resonant phononic crystal metamaterial.
    Xiao P; Miao L; Zheng H; Lei L
    J Phys Condens Matter; 2024 Feb; 36(19):. PubMed ID: 38316041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A promising ultra-sensitive CO
    Almawgani AHM; Fathy HM; Elsayed HA; Abdelrahman Ali YA; Mehaney A
    Sci Rep; 2023 Sep; 13(1):15028. PubMed ID: 37700005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acoustic energy harvesting using phononic crystal fiber with conical input.
    Motaei F; Bahrami A
    Sci Rep; 2024 May; 14(1):12354. PubMed ID: 38811571
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure.
    Zhang S; Qian D; Zhang Z; Ge H
    Materials (Basel); 2024 Apr; 17(7):. PubMed ID: 38612216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable Hypersonic Bandgap Formation in Anisotropic Crystals of Dumbbell Nanoparticles.
    Kim H; Gueddida A; Wang Z; Djafari-Rouhani B; Fytas G; Furst EM
    ACS Nano; 2023 Oct; 17(19):19224-19231. PubMed ID: 37756140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.