These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30216970)

  • 1. Treatment of textile dyeing industry effluent using hydrodynamic cavitation in combination with advanced oxidation reagents.
    Rajoriya S; Bargole S; George S; Saharan VK
    J Hazard Mater; 2018 Feb; 344():1109-1115. PubMed ID: 30216970
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid treatment strategies for 2,4,6-trichlorophenol degradation based on combination of hydrodynamic cavitation and AOPs.
    Barik AJ; Gogate PR
    Ultrason Sonochem; 2018 Jan; 40(Pt A):383-394. PubMed ID: 28946437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: Reaction mechanism and pathway.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jan; 34():183-194. PubMed ID: 27773234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent.
    Thanekar P; Gogate PR
    Ultrason Sonochem; 2019 May; 53():202-213. PubMed ID: 30686598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L.
    Joshi SM; Gogate PR
    Ultrason Sonochem; 2019 Apr; 52():375-381. PubMed ID: 30563793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of reactive blue 13 using hydrodynamic cavitation: Effect of geometrical parameters and different oxidizing additives.
    Rajoriya S; Bargole S; Saharan VK
    Ultrason Sonochem; 2017 Jul; 37():192-202. PubMed ID: 28427623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: A case study for real life greywater treatment.
    Mukherjee A; Mullick A; Teja R; Vadthya P; Roy A; Moulik S
    Ultrason Sonochem; 2020 Sep; 66():105116. PubMed ID: 32252011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of acoustic and hydrodynamic cavitation based hybrid AOPs for COD reduction of commercial effluent from CETP.
    Agarkoti C; Gogate PR; Pandit AB
    J Environ Manage; 2021 Mar; 281():111792. PubMed ID: 33383477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined treatment technology based on synergism between hydrodynamic cavitation and advanced oxidation processes.
    Gogate PR; Patil PN
    Ultrason Sonochem; 2015 Jul; 25():60-9. PubMed ID: 25190647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process intensifying parameters on the hydrodynamic cavitation based degradation of commercial pesticide (methomyl) in the aqueous solution.
    Raut-Jadhav S; Saini D; Sonawane S; Pandit A
    Ultrason Sonochem; 2016 Jan; 28():283-293. PubMed ID: 26384910
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decolorization of textile wastewater by ozonation and Fenton's process.
    Sevimli MF; Kinaci C
    Water Sci Technol; 2002; 45(12):279-86. PubMed ID: 12201113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An advanced pretreatment strategy involving hydrodynamic and acoustic cavitation along with alum coagulation for the mineralization and biodegradability enhancement of tannery waste effluent.
    Saxena S; Rajoriya S; Saharan VK; George S
    Ultrason Sonochem; 2018 Jun; 44():299-309. PubMed ID: 29680615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Color, TOC and AOX removals from pulp mill effluent by advanced oxidation processes: a comparative study.
    Catalkaya EC; Kargi F
    J Hazard Mater; 2007 Jan; 139(2):244-53. PubMed ID: 16839682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of reactive orange 4 dye using hydrodynamic cavitation based hybrid techniques.
    Gore MM; Saharan VK; Pinjari DV; Chavan PV; Pandit AB
    Ultrason Sonochem; 2014 May; 21(3):1075-82. PubMed ID: 24360991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of various advanced oxidation processes and chemical treatment methods for COD and color removal from a polyester and acetate fiber dyeing effluent.
    Azbar N; Yonar T; Kestioglu K
    Chemosphere; 2004 Apr; 55(1):35-43. PubMed ID: 14720544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of hybrid oxidative processes based on cavitation for the treatment of commercial dye industry effluents.
    Gujar SK; Gogate PR
    Ultrason Sonochem; 2021 Jul; 75():105586. PubMed ID: 34004457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton's oxidation.
    Yetilmezsoy K; Sakar S
    J Hazard Mater; 2008 Mar; 151(2-3):547-58. PubMed ID: 17643817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of Levafix CA reactive azo-dyes in industrial wastewater of textile dyeing by electro-generated Fenton's reagent.
    El-Desoky HS; Ghoneim MM; El-Sheikh R; Zidan NM
    J Hazard Mater; 2010 Mar; 175(1-3):858-65. PubMed ID: 19926217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling and optimization of acid dye manufacturing wastewater treatment with Fenton's reagent: comparison with electrocoagulation treatment results and effects on activated sludge inhibition.
    Arslan-Alaton I; Gursoy BH; Akyol A; Kobya M; Bayramoglu M
    Water Sci Technol; 2010; 62(1):209-16. PubMed ID: 20595773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pre-treatment of penicillin formulation effluent by advanced oxidation processes.
    Arslan-Alaton I; Dogruel S
    J Hazard Mater; 2004 Aug; 112(1-2):105-13. PubMed ID: 15225936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.