These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 30216994)

  • 1. Pipeline Inspection Gauge's Velocity Simulation Based on Pressure Differential Using Artificial Neural Networks.
    de Araújo RP; de Freitas VCG; de Lima GF; Salazar AO; Neto ADD; Maitelli AL
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30216994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Velocity Prediction of a Pipeline Inspection Gauge (PIG) with Machine Learning.
    Freitas VCG; Araujo VG; Crisóstomo DCC; Lima GF; Neto ADD; Salazar AO
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIG's Speed Estimated with Pressure Transducers and Hall Effect Sensor: An Industrial Application of Sensors to Validate a Testing Laboratory.
    Lima GF; Freitas VCG; Araújo RP; Maitelli AL; Salazar AO
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28914757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensation Method for Pipeline Centerline Measurement of in-Line Inspection during Odometer Slips Based on Multi-Sensor Fusion and LSTM Network.
    Liu S; Zheng D; Li R
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31470577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Real-Time, Non-Contact Method for In-Line Inspection of Oil and Gas Pipelines Using Optical Sensor Array.
    Sampath S; Bhattacharya B; Aryan P; Sohn H
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel Method to Enhance Pipeline Trajectory Determination Using Pipeline Junctions.
    Sahli H; El-Sheimy N
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27110780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pipeline In-Line Inspection Method, Instrumentation and Data Management.
    Ma Q; Tian G; Zeng Y; Li R; Song H; Wang Z; Gao B; Zeng K
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of an Articulated Sensor Carrier to Improve the Automatic Pipeline Inspection.
    Ramirez-Martinez A; Rodríguez-Olivares NA; Torres-Torres S; Ronquillo-Lomelí G; Soto-Cajiga JA
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30901871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational capabilities of recurrent NARX neural networks.
    Siegelmann HT; Horne BG; Giles CL
    IEEE Trans Syst Man Cybern B Cybern; 1997; 27(2):208-15. PubMed ID: 18255858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FEM-based neural-network approach to nonlinear modeling with application to longitudinal vehicle dynamics control.
    Kalkkuhl J; Hunt KJ; Fritz H
    IEEE Trans Neural Netw; 1999; 10(4):885-97. PubMed ID: 18252584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of radioactive particle tracking and an artificial neural network to calculating the flow rate in a two-phase (oil-water) stratified flow regime.
    Dam RSF; Salgado WL; Schirru R; Salgado CM
    Appl Radiat Isot; 2022 Feb; 180():110061. PubMed ID: 34906851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. System Identification Methodology of a Gas Turbine Based on Artificial Recurrent Neural Networks.
    Aquize R; Cajahuaringa A; Machuca J; Mauricio D; Mauricio Villanueva JM
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improvement of Ultrasonic Pulse Generator for Automatic Pipeline Inspection.
    Rodríguez-Olivares NA; Cruz-Cruz JV; Gómez-Hernández A; Hernández-Alvarado R; Nava-Balanzar L; Salgado-Jiménez T; Soto-Cajiga JA
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30189628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comprehensive Review of Micro-Inertial Measurement Unit Based Intelligent PIG Multi-Sensor Fusion Technologies for Small-Diameter Pipeline Surveying.
    Guan L; Cong X; Zhang Q; Liu F; Gao Y; An W; Noureldin A
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32906816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing MLP networks using a distributed data representation.
    Narayan S; Tagliarini GA; Page EW
    IEEE Trans Syst Man Cybern B Cybern; 1996; 26(1):143-9. PubMed ID: 18263014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intelligent gamma-ray technique for determining wax thickness in pipelines.
    Askari M; Taheri A; Kochakpour J; Sasanpour MT
    Appl Radiat Isot; 2021 Jun; 172():109667. PubMed ID: 33711587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots.
    Jung JY; Heo W; Yang H; Park H
    Sensors (Basel); 2015 Oct; 15(11):27738-59. PubMed ID: 26528986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of gamma radiation and artificial neural network techniques to monitor characteristics of polyduct transport of petroleum by-products.
    Salgado WL; Dam RSF; Puertas EJA; Salgado CM; Silva AX
    Appl Radiat Isot; 2022 Aug; 186():110267. PubMed ID: 35561550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gauge inspection using hough transforms.
    Dyer CR
    IEEE Trans Pattern Anal Mach Intell; 1983 Jun; 5(6):621-3. PubMed ID: 21869149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Modeling of Mechanical Behavior for Buried Steel Pipelines Crossing Subsidence Strata.
    Zhang J; Liang Z; Han CJ
    PLoS One; 2015; 10(6):e0130459. PubMed ID: 26103460
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.