These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 30217013)

  • 1. The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro.
    Zhao Y; Liu B; Bi H; Yang J; Li W; Liang H; Liang Y; Jia Z; Shi S; Chen M
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30217013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles.
    Yang J; Cao X; Zhao Y; Wang L; Liu B; Jia J; Liang H; Chen M
    J Biomater Sci Polym Ed; 2017 Apr; 28(5):486-503. PubMed ID: 28054502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of functionalized poly(l-lactide) with surface-modified MgO and chitin whiskers on osteogenesis in vivo and in vitro.
    Liu W; Zou Z; Zhou L; Liu H; Wen W; Zhou C; Luo B
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109851. PubMed ID: 31349474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Magnesium Oxide (MgO) Shapes on In Vitro and In Vivo Degradation Behaviors of PLA/MgO Composites in Long Term.
    Zhao Y; Liang H; Zhang S; Qu S; Jiang Y; Chen M
    Polymers (Basel); 2020 May; 12(5):. PubMed ID: 32397097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication, Crystalline Behavior, Mechanical Property and In-Vivo Degradation of Poly(l-lactide) (PLLA)-Magnesium Oxide Whiskers (MgO) Nano Composites Prepared by In-Situ Polymerization.
    Liang H; Zhao Y; Yang J; Li X; Yang X; Sasikumar Y; Zhou Z; Chen M
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31269645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.
    Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK
    Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold.
    Shuai C; Zan J; Yang Y; Peng S; Yang W; Qi F; Shen L; Tian Z
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110486. PubMed ID: 31924055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic Effect of Surface-Modified MgO and Chitin Whiskers on the Hydrolytic Degradation Behavior of Injection Molding Poly(l-lactic acid).
    Wen W; Liu K; Zou Z; Zhou C; Luo B
    ACS Biomater Sci Eng; 2019 Jun; 5(6):2942-2952. PubMed ID: 33405597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.
    Fang Z; Feng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation properties of chitosan microspheres/poly(L-lactic acid) composite in vitro and in vivo.
    Guo Z; Bo D; He Y; Luo X; Li H
    Carbohydr Polym; 2018 Aug; 193():1-8. PubMed ID: 29773361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of engineered low-modulus Mg/PLLA composites as potential orthopaedic implants: An in vitro and in vivo study.
    Yu X; Huang W; Zhao D; Yang K; Tan L; Zhang X; Li J; Zhang M; Zhang S; Liu T; Wu B; Qu M; Duan R; Yuan Y
    Colloids Surf B Biointerfaces; 2019 Feb; 174():280-290. PubMed ID: 30469049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrophoretic deposition of MgO nanoparticles imparts antibacterial properties to poly-L-lactic acid for orthopedic applications.
    Hickey DJ; Muthusamy D; Webster TJ
    J Biomed Mater Res A; 2017 Nov; 105(11):3136-3147. PubMed ID: 28782240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.
    Liu X; Hasan MS; Grant DM; Harper LT; Parsons AJ; Palmer G; Rudd CD; Ahmed I
    J Biomater Appl; 2014 Nov; 29(5):675-87. PubMed ID: 25028389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance test of Nano-HA/PLLA composites for interface fixation.
    Zhu W; Huang J; Lu W; Sun Q; Peng L; Fen W; Li H; Ou Y; Liu H; Wang D; Zeng Y
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):331-5. PubMed ID: 23957645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-existence effect of tricalcium phosphate and bioactive glass on biological and biodegradation characteristic of Poly L-Lactic Acid (PLLA) in trinary composite scaffold form.
    Ghasemi A; Hashemi B
    Biomed Mater Eng; 2017; 28(6):655-669. PubMed ID: 29171974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro flexural properties of hydroxyapatite and self-reinforced poly(L-lactic acid).
    Wright-Charlesworth DD; King JA; Miller DM; Lim CH
    J Biomed Mater Res A; 2006 Sep; 78(3):541-9. PubMed ID: 16736480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.
    Dziadek M; Menaszek E; Zagrajczuk B; Pawlik J; Cholewa-Kowalska K
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():9-21. PubMed ID: 26249560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro degradation, hemolysis, and cytocompatibility of PEO/PLLA composite coating on biodegradable AZ31 alloy.
    Wei Z; Tian P; Liu X; Zhou B
    J Biomed Mater Res B Appl Biomater; 2015 Feb; 103(2):342-54. PubMed ID: 24889920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnesium oxide nanoparticle-loaded polycaprolactone composite electrospun fiber scaffolds for bone-soft tissue engineering applications: in-vitro and in-vivo evaluation.
    Suryavanshi A; Khanna K; Sindhu KR; Bellare J; Srivastava R
    Biomed Mater; 2017 Sep; 12(5):055011. PubMed ID: 28944766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.