These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30217102)

  • 1. A Review of Planar PIV Systems and Image Processing Tools for Lab-On-Chip Microfluidics.
    Ergin FG; Watz BB; Gade-Nielsen NF
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30217102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-Particle Image Velocimetry (microPIV): recent developments, applications, and guidelines.
    Lindken R; Rossi M; Grosse S; Westerweel J
    Lab Chip; 2009 Sep; 9(17):2551-67. PubMed ID: 19680579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV.
    Kinoshita H; Kaneda S; Fujii T; Oshima M
    Lab Chip; 2007 Mar; 7(3):338-46. PubMed ID: 17330165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters.
    Basu AS
    Lab Chip; 2013 May; 13(10):1892-901. PubMed ID: 23567746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-Resolved Particle Image Velocimetry Measurements with Wall Shear Stress and Uncertainty Quantification for the FDA Nozzle Model.
    Raben JS; Hariharan P; Robinson R; Malinauskas R; Vlachos PP
    Cardiovasc Eng Technol; 2016 Mar; 7(1):7-22. PubMed ID: 26628081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-camera, three-dimensional particle tracking velocimetry.
    Peterson K; Regaard B; Heinemann S; Sick V
    Opt Express; 2012 Apr; 20(8):9031-7. PubMed ID: 22513613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study of flow behaviors of droplet merging and splitting in microchannels using Micro-PIV measurement.
    Shen F; Li Y; Liu Z; Li X
    Microfluid Nanofluidics; 2017 Apr; 21(4):. PubMed ID: 28890680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study of EWOD-driven droplets by PIV investigation.
    Lu HW; Bottausci F; Fowler JD; Bertozzi AL; Meinhart C; Kim CJ
    Lab Chip; 2008 Mar; 8(3):456-61. PubMed ID: 18305865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization.
    Chartrand C; Le AV; Fenech M
    MethodsX; 2023; 10():102110. PubMed ID: 37007623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eliminating background noise effect in micro-resolution particle image velocimetry.
    Tian JD; Qiu HH
    Appl Opt; 2002 Nov; 41(32):6849-57. PubMed ID: 12440539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of measurement accuracy of X-ray PIV in comparison with the micro-PIV technique.
    Park H; Jung SY; Park JH; Kim JH; Lee SJ
    J Synchrotron Radiat; 2018 Mar; 25(Pt 2):552-559. PubMed ID: 29488936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vision-Based Performance Analysis of an Active Microfluidic Droplet Generation System Using Droplet Images.
    Mudugamuwa A; Hettiarachchi S; Melroy G; Dodampegama S; Konara M; Roshan U; Amarasinghe R; Jayathilaka D; Wang P
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AC electric field controlled non-Newtonian filament thinning and droplet formation on the microscale.
    Huang Y; Wang YL; Wong TN
    Lab Chip; 2017 Aug; 17(17):2969-2981. PubMed ID: 28745766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instantaneous 4D micro-particle image velocimetry (µPIV) via multifocal microscopy (MUM).
    Guastamacchia MGR; Xue R; Madi K; Pitkeathly WTE; Lee PD; Webb SED; Cartmell SH; Dalgarno PA
    Sci Rep; 2022 Nov; 12(1):18458. PubMed ID: 36323775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.
    Ha H; Nam KH; Lee SJ
    Microvasc Res; 2012 Nov; 84(3):242-8. PubMed ID: 22820216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical and Experimental Analyses of Three- Dimensional Unsteady Flow around a Micro-Pillar Subjected to Rotational Vibration.
    Kaneko K; Osawa T; Kametani Y; Hayakawa T; Hasegawa Y; Suzuki H
    Micromachines (Basel); 2018 Dec; 9(12):. PubMed ID: 30563012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity measurement accuracy in optical microhemodynamics: experiment and simulation.
    Chayer B; L Pitts K; Cloutier G; Fenech M
    Physiol Meas; 2012 Oct; 33(10):1585-602. PubMed ID: 22945542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stereoscopic particle image velocimetry in inhomogeneous refractive index fields of combustion flows.
    Vanselow C; Hoppe O; Stöbener D; Fischer A
    Appl Opt; 2021 Oct; 60(28):8716-8727. PubMed ID: 34613097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visualization of Flow Field Around a Vibrating Pipeline Within an Equilibrium Scour Hole.
    Guan D; Chiew YM; Wei M; Hsieh SC
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31498307
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern.
    Kheradvar A; Houle H; Pedrizzetti G; Tonti G; Belcik T; Ashraf M; Lindner JR; Gharib M; Sahn D
    J Am Soc Echocardiogr; 2010 Jan; 23(1):86-94. PubMed ID: 19836203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.