These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 30217102)

  • 61. A translating stage system for µ-PIV measurements surrounding the tip of a migrating semi-infinite bubble.
    Smith BJ; Yamaguchi E; Gaver DP
    Meas Sci Technol; 2010 Jan; 21(1):. PubMed ID: 23049168
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Impedance feedback control of microfluidic valves for reliable post processing combinatorial droplet injection.
    Axt B; Hsieh YF; Nalayanda D; Wang TH
    Biomed Microdevices; 2017 Sep; 19(3):61. PubMed ID: 28681238
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology.
    Nguyen NT; Shaegh SA; Kashaninejad N; Phan DT
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1403-19. PubMed ID: 23726943
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Functionalised alginate flow seeding microparticles for use in Particle Image Velocimetry (PIV).
    Varela S; Balagué I; Sancho I; Ertürk N; Ferrando M; Vernet A
    J Microencapsul; 2016; 33(2):153-61. PubMed ID: 26878165
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Density-gradient-assisted centrifugal microfluidics: an approach to continuous-mode particle separation.
    Ukita Y; Oguro T; Takamura Y
    Biomed Microdevices; 2017 Jun; 19(2):24. PubMed ID: 28378147
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Numerical modeling of microbubble backscatter to optimize ultrasound particle image velocimetry imaging: initial studies.
    Mukdadi OM; Kim HB; Hertzberg J; Shandas R
    Ultrasonics; 2004 Aug; 42(10):1111-21. PubMed ID: 15234173
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Compressed sensing of remotely detected MRI velocimetry in microfluidics.
    Paulsen J; Bajaj VS; Pines A
    J Magn Reson; 2010 Aug; 205(2):196-201. PubMed ID: 20638994
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics.
    Funfschilling D; Debas H; Li HZ; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015301. PubMed ID: 19658759
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Droplet Merging on a Lab-on-a-Chip Platform by Uniform Magnetic Fields.
    Varma VB; Ray A; Wang ZM; Wang ZP; Ramanujan RV
    Sci Rep; 2016 Nov; 6():37671. PubMed ID: 27892475
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold.
    Campos Marin A; Grossi T; Bianchi E; Dubini G; Lacroix D
    Ann Biomed Eng; 2017 May; 45(5):1341-1351. PubMed ID: 27957607
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Passive and active droplet generation with microfluidics: a review.
    Zhu P; Wang L
    Lab Chip; 2016 Dec; 17(1):34-75. PubMed ID: 27841886
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Quantification of tomographic PIV uncertainty using controlled experimental measurements.
    Liu N; Wu Y; Ma L
    Appl Opt; 2018 Jan; 57(3):420-427. PubMed ID: 29400791
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Dynamical programming based turbulence velocimetry for fast visible imaging of tokamak plasma.
    Banerjee S; Zushi H; Nishino N; Mishra K; Onchi T; Kuzmin A; Nagashima Y; Hanada K; Nakamura K; Idei H; Hasegawa M; Fujisawa A
    Rev Sci Instrum; 2015 Mar; 86(3):033505. PubMed ID: 25832227
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Turbulence in a microscale planar confined impinging-jets reactor.
    Liu Y; Olsen MG; Fox RO
    Lab Chip; 2009 Apr; 9(8):1110-8. PubMed ID: 19350093
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Measurement of flow velocity fields in small vessel-mimic phantoms and vessels of small animals using micro ultrasonic particle image velocimetry (micro-EPIV).
    Qian M; Niu L; Wang Y; Jiang B; Jin Q; Jiang C; Zheng H
    Phys Med Biol; 2010 Oct; 55(20):6069-88. PubMed ID: 20858920
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.
    Krishna KS; Li Y; Li S; Kumar CS
    Adv Drug Deliv Rev; 2013 Nov; 65(11-12):1470-95. PubMed ID: 23726944
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reconfigurable virtual electrowetting channels.
    Banerjee A; Kreit E; Liu Y; Heikenfeld J; Papautsky I
    Lab Chip; 2012 Feb; 12(4):758-64. PubMed ID: 22159496
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Image-Based Experimental Measurement Techniques to Characterize Velocity Fields in Blood Microflows.
    Le AV; Fenech M
    Front Physiol; 2022; 13():886675. PubMed ID: 35574441
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.
    Zhu Z; Yang CJ
    Acc Chem Res; 2017 Jan; 50(1):22-31. PubMed ID: 28029779
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A fast all-in-one method for automated post-processing of PIV data.
    Garcia D
    Exp Fluids; 2011 May; 50(5):1247-1259. PubMed ID: 24795497
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.