These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 3021718)

  • 1. On the role of physical parameters in the regulation of electron transport: diffusion, collision, and complex formation.
    Klingenberg M
    J Bioenerg Biomembr; 1986 Oct; 18(5):447-51. PubMed ID: 3021718
    [No Abstract]   [Full Text] [Related]  

  • 2. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport.
    Hackenbrock CR; Chazotte B; Gupte SS
    J Bioenerg Biomembr; 1986 Oct; 18(5):331-68. PubMed ID: 3021714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energized cation transport by complex III (ubiquinone-cytochrome C reductase).
    Fry M; Green DE
    Biochem Biophys Res Commun; 1980 Dec; 97(3):852-9. PubMed ID: 6258602
    [No Abstract]   [Full Text] [Related]  

  • 4. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components.
    Gupte S; Wu ES; Hoechli L; Hoechli M; Jacobson K; Sowers AE; Hackenbrock CR
    Proc Natl Acad Sci U S A; 1984 May; 81(9):2606-10. PubMed ID: 6326133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Is ubiquinone diffusion rate-limiting for electron transfer?
    Lenaz G; Fato R
    J Bioenerg Biomembr; 1986 Oct; 18(5):369-401. PubMed ID: 3021715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of the protonmotive ubiquinone cycle in the respiratory chain of higher plants and its relation to the branchpoint of the alternate pathway.
    Rich PR; Moore AL
    FEBS Lett; 1976 Jun; 65(3):339-44. PubMed ID: 182535
    [No Abstract]   [Full Text] [Related]  

  • 7. Reconstruction of photosynthetic, cyclic electron transport system from photoreaction unit, ubiquinone-10 protein, cytochrome c2 and polar lipids purified from Rhodospirillum rubrum.
    Matsuda H; Nishi N; Tsuji K; Tanaka K; Kakuno T; Yamashita J; Horio T
    J Biochem; 1984 Feb; 95(2):431-42. PubMed ID: 6325401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of rate limitation by cytochrome c on the redox state of the ubiquinone pool in reconstituted NADH: cytochrome c reductase.
    Reed JS; Ragan CI
    Biochem J; 1987 Nov; 247(3):657-62. PubMed ID: 2827635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Q-cycle mechanism for the cyclic electron-transfer chain of Rhodopseudomonas sphaeroides.
    Crofts AR; Meinhardt SW
    Biochem Soc Trans; 1982 Aug; 10(4):201-3. PubMed ID: 6292019
    [No Abstract]   [Full Text] [Related]  

  • 10. Single and multiple turnover reactions in the ubiquinone-cytochrome b-c2 oxidoreductase of Rhodopseudomonas sphaeroids: the physical chemistry of the major electron donor to cytochrome c2, and its coupled reactions.
    Prince RC; Dutton PL
    Biochim Biophys Acta; 1977 Dec; 462(3):731-47. PubMed ID: 202311
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further evidence for the pool function of ubiquinone as derived from the inhibition of the electron transport by antimycin.
    Kröger A; Klingenberg M
    Eur J Biochem; 1973 Nov; 39(2):313-23. PubMed ID: 4359626
    [No Abstract]   [Full Text] [Related]  

  • 12. Role of ubiquinone-10 in electron transport system of chromatophores from Rhodospirillum rubrum.
    Higuti T; Erabi T; Kakuno T; Horio T
    J Biochem; 1975 Jul; 78(1):51-6. PubMed ID: 172493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a flash-activated cyclic electron transport system by using bacterial reaction centers and the ubiquinone-cytochrome b-c1/c segment of mitochondria.
    Packham NK; Tiede DM; Mueller P; Dutton PL
    Proc Natl Acad Sci U S A; 1980 Nov; 77(11):6339-43. PubMed ID: 6256732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle.
    Mitchell P
    FEBS Lett; 1975 Aug; 56(1):1-6. PubMed ID: 239860
    [No Abstract]   [Full Text] [Related]  

  • 15. Simplicity and complexity in electron transfer between NADH and c-type cytochromes in bacteria.
    Berks BC; Ferguson SJ
    Biochem Soc Trans; 1991 Aug; 19(3):581-8. PubMed ID: 1664387
    [No Abstract]   [Full Text] [Related]  

  • 16. Proton-translocating cytochrome complexes.
    Wikström M; Krab K; Saraste M
    Annu Rev Biochem; 1981; 50():623-55. PubMed ID: 6267990
    [No Abstract]   [Full Text] [Related]  

  • 17. Identification of ubiquinone as the secondary electron acceptor in the photosynthetic apparatus of Chromatium vinosum.
    Halsey YD; Parson WW
    Biochim Biophys Acta; 1974 Jun; 347(3):404-16. PubMed ID: 4366890
    [No Abstract]   [Full Text] [Related]  

  • 18. Study of ubiquinone binding in ubiquinol-cytochrome c reductase by spin labeled ubiquinone derivative.
    Yu CA; Yu L
    Biochem Biophys Res Commun; 1981 Feb; 98(4):1063-9. PubMed ID: 6261756
    [No Abstract]   [Full Text] [Related]  

  • 19. Flash-induced electron transfer through mitochondrial QH2: cytochrome c oxidoreductase in the presence of bacterial reaction centres and cytochrome c. Analysis of subsequent processes and effect of inhibitors.
    Zhu QS; Van der Wal HN; Van Grondelle R; Berden JA
    Biochim Biophys Acta; 1984 Apr; 765(1):48-57. PubMed ID: 6324866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectric currents across planar bilayer membranes containing bacterial reaction centers: the response under conditions of multiple reaction-center turnovers.
    Packham NK; Mueller P; Dutton PL
    Biochim Biophys Acta; 1988 Mar; 933(1):70-84. PubMed ID: 2831977
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.