These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3455 related articles for article (PubMed ID: 30217670)
1. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
2. Evaluating semantic relations in neural word embeddings with biomedical and general domain knowledge bases. Chen Z; He Z; Liu X; Bian J BMC Med Inform Decis Mak; 2018 Jul; 18(Suppl 2):65. PubMed ID: 30066651 [TBL] [Abstract][Full Text] [Related]
3. The Impact of Specialized Corpora for Word Embeddings in Natural Langage Understanding. Neuraz A; Rance B; Garcelon N; Llanos LC; Burgun A; Rosset S Stud Health Technol Inform; 2020 Jun; 270():432-436. PubMed ID: 32570421 [TBL] [Abstract][Full Text] [Related]
4. HPO2Vec+: Leveraging heterogeneous knowledge resources to enrich node embeddings for the Human Phenotype Ontology. Shen F; Peng S; Fan Y; Wen A; Liu S; Wang Y; Wang L; Liu H J Biomed Inform; 2019 Aug; 96():103246. PubMed ID: 31255713 [TBL] [Abstract][Full Text] [Related]
5. Improved biomedical word embeddings in the transformer era. Noh J; Kavuluru R J Biomed Inform; 2021 Aug; 120():103867. PubMed ID: 34284119 [TBL] [Abstract][Full Text] [Related]
6. BioConceptVec: Creating and evaluating literature-based biomedical concept embeddings on a large scale. Chen Q; Lee K; Yan S; Kim S; Wei CH; Lu Z PLoS Comput Biol; 2020 Apr; 16(4):e1007617. PubMed ID: 32324731 [TBL] [Abstract][Full Text] [Related]
7. Deep learning with sentence embeddings pre-trained on biomedical corpora improves the performance of finding similar sentences in electronic medical records. Chen Q; Du J; Kim S; Wilbur WJ; Lu Z BMC Med Inform Decis Mak; 2020 Apr; 20(Suppl 1):73. PubMed ID: 32349758 [TBL] [Abstract][Full Text] [Related]
8. Bio-SimVerb and Bio-SimLex: wide-coverage evaluation sets of word similarity in biomedicine. Chiu B; Pyysalo S; Vulić I; Korhonen A BMC Bioinformatics; 2018 Feb; 19(1):33. PubMed ID: 29402212 [TBL] [Abstract][Full Text] [Related]
9. Domain specific word embeddings for natural language processing in radiology. Chen TL; Emerling M; Chaudhari GR; Chillakuru YR; Seo Y; Vu TH; Sohn JH J Biomed Inform; 2021 Jan; 113():103665. PubMed ID: 33333323 [TBL] [Abstract][Full Text] [Related]
10. A study of deep learning methods for de-identification of clinical notes in cross-institute settings. Yang X; Lyu T; Li Q; Lee CY; Bian J; Hogan WR; Wu Y BMC Med Inform Decis Mak; 2019 Dec; 19(Suppl 5):232. PubMed ID: 31801524 [TBL] [Abstract][Full Text] [Related]
11. Visualization of medical concepts represented using word embeddings: a scoping review. Oubenali N; Messaoud S; Filiot A; Lamer A; Andrey P BMC Med Inform Decis Mak; 2022 Mar; 22(1):83. PubMed ID: 35351120 [TBL] [Abstract][Full Text] [Related]
12. Combining word embeddings to extract chemical and drug entities in biomedical literature. López-Úbeda P; Díaz-Galiano MC; Ureña-López LA; Martín-Valdivia MT BMC Bioinformatics; 2021 Dec; 22(Suppl 1):599. PubMed ID: 34920708 [TBL] [Abstract][Full Text] [Related]
13. Projection Word Embedding Model With Hybrid Sampling Training for Classifying ICD-10-CM Codes: Longitudinal Observational Study. Lin C; Lou YS; Tsai DJ; Lee CC; Hsu CJ; Wu DC; Wang MC; Fang WH JMIR Med Inform; 2019 Jul; 7(3):e14499. PubMed ID: 31339103 [TBL] [Abstract][Full Text] [Related]
14. Word embeddings trained on published case reports are lightweight, effective for clinical tasks, and free of protected health information. Flamholz ZN; Crane-Droesch A; Ungar LH; Weissman GE J Biomed Inform; 2022 Jan; 125():103971. PubMed ID: 34920127 [TBL] [Abstract][Full Text] [Related]
15. Medical subdomain classification of clinical notes using a machine learning-based natural language processing approach. Weng WH; Wagholikar KB; McCray AT; Szolovits P; Chueh HC BMC Med Inform Decis Mak; 2017 Dec; 17(1):155. PubMed ID: 29191207 [TBL] [Abstract][Full Text] [Related]
16. Corpus domain effects on distributional semantic modeling of medical terms. Pakhomov SV; Finley G; McEwan R; Wang Y; Melton GB Bioinformatics; 2016 Dec; 32(23):3635-3644. PubMed ID: 27531100 [TBL] [Abstract][Full Text] [Related]
17. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts. Mao Y; Fung KW J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614 [TBL] [Abstract][Full Text] [Related]
18. Do You Need Embeddings Trained on a Massive Specialized Corpus for Your Clinical Natural Language Processing Task? Neuraz A; Looten V; Rance B; Daniel N; Garcelon N; Llanos LC; Burgun A; Rosset S Stud Health Technol Inform; 2019 Aug; 264():1558-1559. PubMed ID: 31438230 [TBL] [Abstract][Full Text] [Related]
19. Extracting similar terms from multiple EMR-based semantic embeddings to support chart reviews. Ye C; Fabbri D J Biomed Inform; 2018 Jul; 83():63-72. PubMed ID: 29793071 [TBL] [Abstract][Full Text] [Related]
20. The quest for better clinical word vectors: Ontology based and lexical vector augmentation versus clinical contextual embeddings. Nath N; Lee SH; McDonnell MD; Lee I Comput Biol Med; 2021 Jul; 134():104433. PubMed ID: 34004575 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]