These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30217725)

  • 21. Harnessing xylose pathways for biofuels production.
    Li X; Chen Y; Nielsen J
    Curr Opin Biotechnol; 2019 Jun; 57():56-65. PubMed ID: 30785001
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.
    Gopinath V; Meiswinkel TM; Wendisch VF; Nampoothiri KM
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):985-96. PubMed ID: 21796382
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hierarchy in pentose sugar metabolism in Clostridium acetobutylicum.
    Aristilde L; Lewis IA; Park JO; Rabinowitz JD
    Appl Environ Microbiol; 2015 Feb; 81(4):1452-62. PubMed ID: 25527534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Arabinose-Induced Catabolite Repression as a Mechanism for Pentose Hierarchy Control in
    Servinsky MD; Renberg RL; Perisin MA; Gerlach ES; Liu S; Sund CJ
    mSystems; 2018; 3(5):. PubMed ID: 30374459
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.
    Zhang B; Li XL; Fu J; Li N; Wang Z; Tang YJ; Chen T
    PLoS One; 2016; 11(7):e0159298. PubMed ID: 27467131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ab-initio and experimental study of pentose sugar dehydration mechanism in the gas phase.
    Antonini L; Garzoli S; Ricci A; Troiani A; Salvitti C; Giacomello P; Ragno R; Patsilinakos A; Di Rienzo B; Pepi F
    Carbohydr Res; 2018 Mar; 458-459():19-28. PubMed ID: 29428483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digestibility of pentose sugars and uronic acids and their effect on chick weight gain and caecal size.
    Longstaff MA; Knox A; McNab JM
    Br Poult Sci; 1988 Jun; 29(2):379-93. PubMed ID: 3409082
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ninety six well microtiter plate as microbioreactors for production of itaconic acid by six Aspergillus terreus strains.
    Saha BC; Kennedy GJ
    J Microbiol Methods; 2018 Jan; 144():53-59. PubMed ID: 29109012
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Screening of lactic acid bacteria for their potential as microbial cell factories for bioconversion of lignocellulosic feedstocks.
    Boguta AM; Bringel F; Martinussen J; Jensen PR
    Microb Cell Fact; 2014 Jul; 13(1):97. PubMed ID: 24997803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-canonical D-xylose and L-arabinose metabolism via D-arabitol in the oleaginous yeast Rhodosporidium toruloides.
    Adamczyk PA; Coradetti ST; Gladden JM
    Microb Cell Fact; 2023 Aug; 22(1):145. PubMed ID: 37537595
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An overview of the metabolically engineered strains and innovative processes used for the value addition of biomass derived xylose to xylitol and xylonic acid.
    Lekshmi Sundar MS; Madhavan Nampoothiri K
    Bioresour Technol; 2022 Feb; 345():126548. PubMed ID: 34906704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward rapid and efficient utilization of nonconventional substrates by nonconventional yeast strains.
    Koh HG; Yook S; Oh H; Rao CV; Jin YS
    Curr Opin Biotechnol; 2024 Feb; 85():103059. PubMed ID: 38171048
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pentose transport by the ruminal bacterium Butyrivibrio fibrisolvens.
    Strobel HJ
    FEMS Microbiol Lett; 1994 Oct; 122(3):217-22. PubMed ID: 7988863
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for catabolite inhibition in regulation of pentose utilization and transport in the ruminal bacterium Selenomonas ruminantium.
    Strobel HJ
    Appl Environ Microbiol; 1993 Jan; 59(1):40-6. PubMed ID: 8439166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of surfactin using pentose carbohydrate by Bacillus subtilis.
    Khan AW; Rahman MS; Zohora US; Okanami M; Ano T
    J Environ Sci (China); 2011 Jun; 23 Suppl():S63-5. PubMed ID: 25084596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media.
    Mussatto SI; Silva CJ; Roberto IC
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):681-6. PubMed ID: 16541249
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conversion of hemicellulose sugars catalyzed by formic acid: kinetics of the dehydration of D-xylose, L-arabinose, and D-glucose.
    Dussan K; Girisuta B; Lopes M; Leahy JJ; Hayes MH
    ChemSusChem; 2015 Apr; 8(8):1411-28. PubMed ID: 25821128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook.
    Jojima T; Omumasaba CA; Inui M; Yukawa H
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):471-80. PubMed ID: 19838697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The influence of Aspergillus niger transcription factors AraR and XlnR in the gene expression during growth in D-xylose, L-arabinose and steam-exploded sugarcane bagasse.
    de Souza WR; Maitan-Alfenas GP; de Gouvêa PF; Brown NA; Savoldi M; Battaglia E; Goldman MH; de Vries RP; Goldman GH
    Fungal Genet Biol; 2013 Nov; 60():29-45. PubMed ID: 23892063
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A strain of Meyerozyma guilliermondii isolated from sugarcane juice is able to grow and ferment pentoses in synthetic and bagasse hydrolysate media.
    Martini C; Tauk-Tornisielo SM; Codato CB; Bastos RG; Ceccato-Antonini SR
    World J Microbiol Biotechnol; 2016 May; 32(5):80. PubMed ID: 27038950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.