BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 30218045)

  • 1. Ear transplantations reveal conservation of inner ear afferent pathfinding cues.
    Elliott KL; Fritzsch B
    Sci Rep; 2018 Sep; 8(1):13819. PubMed ID: 30218045
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties.
    Gordy C; Straka H; Houston DW; Fritzsch B; Elliott KL
    Dev Neurobiol; 2018 Nov; 78(11):1064-1080. PubMed ID: 30027559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topologically correct central projections of tetrapod inner ear afferents require Fzd3.
    Duncan JS; Fritzsch B; Houston DW; Ketchum EM; Kersigo J; Deans MR; Elliott KL
    Sci Rep; 2019 Jul; 9(1):10298. PubMed ID: 31311957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord.
    Elliott KL; Fritzsch B
    Int J Dev Biol; 2010; 54(10):1443-51. PubMed ID: 21302254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant mice reveal the molecular and cellular basis for specific sensory connections to inner ear epithelia and primary nuclei of the brain.
    Fritzsch B; Pauley S; Matei V; Katz DM; Xiang M; Tessarollo L
    Hear Res; 2005 Aug; 206(1-2):52-63. PubMed ID: 16080998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative view of the central organization of afferent and efferent circuitry for the inner ear.
    Meredith GE
    Acta Biol Hung; 1988; 39(2-3):229-49. PubMed ID: 3077006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation.
    Ma Q; Anderson DJ; Fritzsch B
    J Assoc Res Otolaryngol; 2000 Sep; 1(2):129-43. PubMed ID: 11545141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vestibulospinal relations: vestibular influences on gamma motoneurons and primary afferents.
    Pompeiano O
    Prog Brain Res; 1972; 37():197-232. PubMed ID: 4264584
    [No Abstract]   [Full Text] [Related]  

  • 9. Morphophysiological studies of the mammalian vestibular labyrinth.
    Goldberg JM; Baird RA; Fernández C
    Prog Clin Biol Res; 1985; 176():231-45. PubMed ID: 2987974
    [No Abstract]   [Full Text] [Related]  

  • 10.
    Stoner ZA; Ketchum EM; Sheltz-Kempf S; Blinkiewicz PV; Elliott KL; Duncan JS
    Front Neurosci; 2021; 15():779871. PubMed ID: 35153658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spiral Ganglion Neuron Projection Development to the Hindbrain in Mice Lacking Peripheral and/or Central Target Differentiation.
    Elliott KL; Kersigo J; Pan N; Jahan I; Fritzsch B
    Front Neural Circuits; 2017; 11():25. PubMed ID: 28450830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of myosin VIIA in the developing chick inner ear neurons.
    Nguyen K; Hall AL; Jones JM
    Gene Expr Patterns; 2015; 19(1-2):36-44. PubMed ID: 26212629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity.
    Goldberg JM; Fernández C
    J Neurophysiol; 1980 Apr; 43(4):986-1025. PubMed ID: 6767000
    [No Abstract]   [Full Text] [Related]  

  • 14. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus.
    Baird RA; Schuff NR
    J Comp Neurol; 1994 Apr; 342(2):279-98. PubMed ID: 8201035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inputs from regularly and irregularly discharging vestibular nerve afferents to secondary neurons in squirrel monkey vestibular nuclei. III. Correlation with vestibulospinal and vestibuloocular output pathways.
    Boyle R; Goldberg JM; Highstein SM
    J Neurophysiol; 1992 Aug; 68(2):471-84. PubMed ID: 1527570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential dynamic processing of afferent signals in frog tonic and phasic second-order vestibular neurons.
    Pfanzelt S; Rössert C; Rohregger M; Glasauer S; Moore LE; Straka H
    J Neurosci; 2008 Oct; 28(41):10349-62. PubMed ID: 18842894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local mechanisms in vestibular receptor control. Effects of curare on the EPSPs and spike discharge recorded from single afferent fibres of the posterior canal nerve of the frog.
    Valli P; Caston J; Zucca G
    Acta Otolaryngol; 1984; 97(5-6):611-8. PubMed ID: 6331709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efferent Inputs Are Required for Normal Function of Vestibular Nerve Afferents.
    Raghu V; Salvi R; Sadeghi SG
    J Neurosci; 2019 Aug; 39(35):6922-6935. PubMed ID: 31285300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of S100 beta in sensory and secretory cells of the vertebrate inner ear.
    Fermin CD; Martin DS
    Cell Mol Biol (Noisy-le-grand); 1995 Mar; 41(2):213-25. PubMed ID: 7787731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The lateral-line and inner-ear afferents in larval and adult urodeles.
    Fritzsch B
    Brain Behav Evol; 1988; 31(6):325-48. PubMed ID: 2843258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.