These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 30218374)
21. [Fibroblast growth factor 23 mediates the phosphaturic actions of cadmium]. Kido S; Fujihara M; Nomura K; Sasaki S; Shiozaki Y; Segawa H; Tatsumi S; Miyamoto K Nihon Eiseigaku Zasshi; 2012; 67(4):464-71. PubMed ID: 23095356 [TBL] [Abstract][Full Text] [Related]
22. Bone mineralization is regulated by signaling cross talk between molecular factors of local and systemic origin: the role of fibroblast growth factor 23. Sapir-Koren R; Livshits G Biofactors; 2014; 40(6):555-68. PubMed ID: 25352227 [TBL] [Abstract][Full Text] [Related]
23. Role of αKlotho and FGF23 in regulation of type II Na-dependent phosphate co-transporters. Hu MC; Shi M; Moe OW Pflugers Arch; 2019 Jan; 471(1):99-108. PubMed ID: 30506274 [TBL] [Abstract][Full Text] [Related]
24. The roles of Na/Pi-II transporters in phosphate metabolism. Segawa H; Aranami F; Kaneko I; Tomoe Y; Miyamoto K Bone; 2009 Jul; 45 Suppl 1():S2-7. PubMed ID: 19232403 [TBL] [Abstract][Full Text] [Related]
25. Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. Kempson SA; Colon-Otero G; Ou SY; Turner ST; Dousa TP J Clin Invest; 1981 May; 67(5):1347-60. PubMed ID: 6453134 [TBL] [Abstract][Full Text] [Related]
26. Renal-specific and inducible depletion of NaPi-IIc/Slc34a3, the cotransporter mutated in HHRH, does not affect phosphate or calcium homeostasis in mice. Myakala K; Motta S; Murer H; Wagner CA; Koesters R; Biber J; Hernando N Am J Physiol Renal Physiol; 2014 Apr; 306(8):F833-43. PubMed ID: 24553430 [TBL] [Abstract][Full Text] [Related]
28. Weak coupling of ATP hydrolysis to the chemical equilibrium of human nicotinamide phosphoribosyltransferase. Burgos ES; Schramm VL Biochemistry; 2008 Oct; 47(42):11086-96. PubMed ID: 18823127 [TBL] [Abstract][Full Text] [Related]
29. The role of SLC34A2 in intestinal phosphate absorption and phosphate homeostasis. Marks J Pflugers Arch; 2019 Jan; 471(1):165-173. PubMed ID: 30343332 [TBL] [Abstract][Full Text] [Related]
30. Kidney glycolysis serves as a mammalian phosphate sensor that maintains phosphate homeostasis. Zhou W; Simic P; Zhou IY; Caravan P; Vela Parada X; Wen D; Washington OL; Shvedova M; Pierce KA; Clish CB; Mannstadt M; Kobayashi T; Wein MN; Jüppner H; Rhee EP J Clin Invest; 2023 Apr; 133(8):. PubMed ID: 36821389 [TBL] [Abstract][Full Text] [Related]
31. Phosphate transporters of the SLC20 and SLC34 families. Forster IC; Hernando N; Biber J; Murer H Mol Aspects Med; 2013; 34(2-3):386-95. PubMed ID: 23506879 [TBL] [Abstract][Full Text] [Related]
32. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies. Forster IC Pflugers Arch; 2019 Jan; 471(1):15-42. PubMed ID: 30244375 [TBL] [Abstract][Full Text] [Related]
33. Expression of phosphate and calcium transporters and their regulators in parotid glands of mice. Moser SO; Haykir B; Küng CJ; Bettoni C; Hernando N; Wagner CA Pflugers Arch; 2023 Feb; 475(2):203-216. PubMed ID: 36274099 [TBL] [Abstract][Full Text] [Related]
34. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Lu W; Wang L; Chen L; Hui S; Rabinowitz JD Antioxid Redox Signal; 2018 Jan; 28(3):167-179. PubMed ID: 28497978 [TBL] [Abstract][Full Text] [Related]
35. Depletion of NAD pool contributes to impairment of endothelial progenitor cell mobilization in diabetes. Wang P; Yang X; Zhang Z; Song J; Guan YF; Zou DJ; Miao CY Metabolism; 2016 Jun; 65(6):852-62. PubMed ID: 27173464 [TBL] [Abstract][Full Text] [Related]
36. [Importance of NAMPT-mediated NAD-biosynthesis and NAD-dependent deacetylase SIRT1 in the crosstalk between circadian rhythm and metabolism]. Yoshino J Nihon Rinsho; 2013 Dec; 71(12):2187-93. PubMed ID: 24437277 [TBL] [Abstract][Full Text] [Related]
37. Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver. Ribas-Latre A; Baselga-Escudero L; Casanova E; Arola-Arnal A; Salvadó MJ; Bladé C; Arola L Sci Rep; 2015 Jun; 5():10954. PubMed ID: 26051626 [TBL] [Abstract][Full Text] [Related]
39. Nampt and its potential role in inflammation and type 2 diabetes. Garten A; Petzold S; Schuster S; Körner A; Kratzsch J; Kiess W Handb Exp Pharmacol; 2011; (203):147-64. PubMed ID: 21484571 [TBL] [Abstract][Full Text] [Related]
40. The regulation and function of phosphate in the human body. Takeda E; Taketani Y; Sawada N; Sato T; Yamamoto H Biofactors; 2004; 21(1-4):345-55. PubMed ID: 15630224 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]