These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 3021844)

  • 1. Mobilization of intracellular calcium from the sarcoplasmic reticulum of B-lymphocytes using cyclic guanosine 3'5'-monophosphate (cGMP).
    Dontsov VI
    J Hyg Epidemiol Microbiol Immunol; 1986; 30(3):295-9. PubMed ID: 3021844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Induction of mobility in mouse B-lymphocytes by acetylcholine and substances increasing the cellular level of cyclic GMP and calcium].
    Ado AD; Dontsov VI
    Biull Eksp Biol Med; 1984 Feb; 97(2):177-8. PubMed ID: 6320928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of cyclic nucleotides and protein phosphorylation on calcium permeability and binding in the sarcoplasmic reticulum.
    Weller M; Laing W
    Biochim Biophys Acta; 1979 Mar; 551(2):406-19. PubMed ID: 217433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bromination of guanosine and cyclic GMP confers resistance to metabolic processing by B cells.
    Goodman MG; Weigle WO
    J Immunol; 1982 Dec; 129(6):2715-7. PubMed ID: 6292298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracellular actions of 5-hydroxytryptamine on the bivalve myocardium. II. Cyclic nucleotide-dependent protein kinases and microsomal calcium uptake.
    Higgins WJ; Greenberg MJ
    J Exp Zool; 1974 Dec; 190(3):305-16. PubMed ID: 4373516
    [No Abstract]   [Full Text] [Related]  

  • 6. Mechanism of cGMP-mediated protection in a cellular model of myocardial reperfusion injury.
    Abdallah Y; Gkatzoflia A; Pieper H; Zoga E; Walther S; Kasseckert S; Schäfer M; Schlüter KD; Piper HM; Schäfer C
    Cardiovasc Res; 2005 Apr; 66(1):123-31. PubMed ID: 15769455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of regucalcin as an activator of sarcoplasmic reticulum Ca2+-ATPase activity in rat heart muscle.
    Yamaguchi M; Nakajima R
    J Cell Biochem; 2002; 86(1):184-93. PubMed ID: 12112029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cyclic guanosine monophosphate (cGMP): metabolism and its biological role].
    Fedorov NA
    Usp Sovrem Biol; 1976; 82(4):34-46. PubMed ID: 10694
    [No Abstract]   [Full Text] [Related]  

  • 9. Cytosolic and sarcoplasmic reticulum-associated low Km, cGMP-inhibited cAMP phosphodiesterase in mammalian myocardium.
    Smith CJ; Krall J; Manganiello VC; Movsesian MA
    Biochem Biophys Res Commun; 1993 Jan; 190(2):516-21. PubMed ID: 8381278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the kinetic effects of phospholamban phosphorylation and anti-phospholamban monoclonal antibody on the calcium pump in purified cardiac sarcoplasmic reticulum membranes.
    Antipenko AY; Spielman AI; Sassaroli M; Kirchberger MA
    Biochemistry; 1997 Oct; 36(42):12903-10. PubMed ID: 9335549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle.
    Twort CH; van Breemen C
    Circ Res; 1988 May; 62(5):961-4. PubMed ID: 2834113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular cyclic GMP and its derivatives GMP and guanosine protect from oxidative glutamate toxicity.
    Albrecht P; Henke N; Tien ML; Issberner A; Bouchachia I; Maher P; Lewerenz J; Methner A
    Neurochem Int; 2013 Apr; 62(5):610-9. PubMed ID: 23357478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenylarsine oxide increases intracellular calcium mobility and inhibits Ca(2+)-dependent ATPase activity in thymocytes.
    Hmadcha A; Carballo M; Conde M; Márquez G; Monteseirín J; Martin-Nieto J; Bedoya FJ; Pintado E; Sobrino F
    Mol Genet Metab; 1999 Nov; 68(3):363-70. PubMed ID: 10562463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Regulation of the cell cycle of B-lymphocytes in mice by substances elevating the levels of intracellular cAMP and cGMP].
    Ado AD; Dontsov VI; Gol'dshteĭn MM
    Biull Eksp Biol Med; 1985 Apr; 99(4):455-8. PubMed ID: 2985157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of cyclic AMP in the modulation of cardiac contractility.
    Entman ML
    Adv Cyclic Nucleotide Res; 1974; 4(0):163-93. PubMed ID: 4369353
    [No Abstract]   [Full Text] [Related]  

  • 16. Characterization of calmodulin-dependent and cyclic-AMP-dependent protein kinase stimulation of cardiac sarcoplasmic reticulum calcium transport.
    Katz S; Richter B; Eibschutz B
    Adv Myocardiol; 1985; 6():233-47. PubMed ID: 3158044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclic GMP signaling and regulation of SERCA activity during cardiac myocyte contraction.
    Zhang Q; Scholz PM; He Y; Tse J; Weiss HR
    Cell Calcium; 2005 Mar; 37(3):259-66. PubMed ID: 15670873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide/cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea.
    Matsunobu T; Schacht J
    J Comp Neurol; 2000 Jul; 423(3):452-61. PubMed ID: 10870085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid modulatory effect of estradiol on acetylcholine-induced Ca2+ signal is mediated through cyclic-GMP cascade in LHRH-releasing GT1-7 cells.
    Morales A; Díaz M; Guelmes P; Marín R; Alonso R
    Eur J Neurosci; 2005 Nov; 22(9):2207-15. PubMed ID: 16262659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biphasic effects of intrapipette cyclic guanosine monophosphate on L-type calcium current and contraction of guinea pig ventricular myocytes.
    Shirayama T; Pappano AJ
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1274-81. PubMed ID: 8968351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.