These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 30218467)
1. TKSA-MC: A web server for rational mutation through the optimization of protein charge interactions. Contessoto VG; de Oliveira VM; Fernandes BR; Slade GG; Leite VBP Proteins; 2018 Nov; 86(11):1184-1188. PubMed ID: 30218467 [TBL] [Abstract][Full Text] [Related]
2. pH and Charged Mutations Modulate Cold Shock Protein Folding and Stability: A Constant pH Monte Carlo Study. de Oliveira VM; Caetano DLZ; da Silva FB; Mouro PR; de Oliveira AB; de Carvalho SJ; Leite VBP J Chem Theory Comput; 2020 Jan; 16(1):765-772. PubMed ID: 31756296 [TBL] [Abstract][Full Text] [Related]
3. Electrostatic interaction optimization improves catalytic rates and thermotolerance on xylanases. de Godoi Contessoto V; Ramos FC; de Melo RR; de Oliveira VM; Scarpassa JA; de Sousa AS; Zanphorlin LM; Slade GG; Leite VBP; Ruller R Biophys J; 2021 Jun; 120(11):2172-2180. PubMed ID: 33831390 [TBL] [Abstract][Full Text] [Related]
4. Thermal versus guanidine-induced unfolding of ubiquitin. An analysis in terms of the contributions from charge-charge interactions to protein stability. Ibarra-Molero B; Loladze VV; Makhatadze GI; Sanchez-Ruiz JM Biochemistry; 1999 Jun; 38(25):8138-49. PubMed ID: 10387059 [TBL] [Abstract][Full Text] [Related]
5. Effects of pH and Salt Concentration on Stability of a Protein G Variant Using Coarse-Grained Models. Martins de Oliveira V; Godoi Contessoto V; Bruno da Silva F; Zago Caetano DL; Jurado de Carvalho S; Pereira Leite VB Biophys J; 2018 Jan; 114(1):65-75. PubMed ID: 29320697 [TBL] [Abstract][Full Text] [Related]
6. PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality. Dehouck Y; Kwasigroch JM; Gilis D; Rooman M BMC Bioinformatics; 2011 May; 12():151. PubMed ID: 21569468 [TBL] [Abstract][Full Text] [Related]
7. Charge-charge interactions influence the denatured state ensemble and contribute to protein stability. Pace CN; Alston RW; Shaw KL Protein Sci; 2000 Jul; 9(7):1395-8. PubMed ID: 10933506 [TBL] [Abstract][Full Text] [Related]
8. Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. Der BS; Kluwe C; Miklos AE; Jacak R; Lyskov S; Gray JJ; Georgiou G; Ellington AD; Kuhlman B PLoS One; 2013; 8(5):e64363. PubMed ID: 23741319 [TBL] [Abstract][Full Text] [Related]
9. Kinetic consequences of native state optimization of surface-exposed electrostatic interactions in the Fyn SH3 domain. Zarrine-Afsar A; Zhang Z; Schweiker KL; Makhatadze GI; Davidson AR; Chan HS Proteins; 2012 Mar; 80(3):858-70. PubMed ID: 22161863 [TBL] [Abstract][Full Text] [Related]
10. Modulation of protein stability and aggregation properties by surface charge engineering. Raghunathan G; Sokalingam S; Soundrarajan N; Madan B; Munussami G; Lee SG Mol Biosyst; 2013 Sep; 9(9):2379-89. PubMed ID: 23861008 [TBL] [Abstract][Full Text] [Related]
11. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families. Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894 [TBL] [Abstract][Full Text] [Related]
12. Electrostatic interactions in leucine zippers: thermodynamic analysis of the contributions of Glu and His residues and the effect of mutating salt bridges. Marti DN; Bosshard HR J Mol Biol; 2003 Jul; 330(3):621-37. PubMed ID: 12842476 [TBL] [Abstract][Full Text] [Related]
13. Optimization of the electrostatic interactions in proteins of different functional and folding type. Spassov VZ; Karshikoff AD; Ladenstein R Protein Sci; 1994 Sep; 3(9):1556-69. PubMed ID: 7833815 [TBL] [Abstract][Full Text] [Related]
14. Protein stability and surface electrostatics: a charged relationship. Strickler SS; Gribenko AV; Gribenko AV; Keiffer TR; Tomlinson J; Reihle T; Loladze VV; Makhatadze GI Biochemistry; 2006 Mar; 45(9):2761-6. PubMed ID: 16503630 [TBL] [Abstract][Full Text] [Related]
15. pStab: prediction of stable mutants, unfolding curves, stability maps and protein electrostatic frustration. Gopi S; Devanshu D; Krishna P; Naganathan AN Bioinformatics; 2018 Mar; 34(5):875-877. PubMed ID: 29092002 [TBL] [Abstract][Full Text] [Related]
16. Alterations of Nonconserved Residues Affect Protein Stability and Folding Dynamics through Charge-Charge Interactions. Tripathi S; Garcìa AE; Makhatadze GI J Phys Chem B; 2015 Oct; 119(41):13103-12. PubMed ID: 26413861 [TBL] [Abstract][Full Text] [Related]
17. The FoldX web server: an online force field. Schymkowitz J; Borg J; Stricher F; Nys R; Rousseau F; Serrano L Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W382-8. PubMed ID: 15980494 [TBL] [Abstract][Full Text] [Related]
18. Turning a mesophilic protein into a thermophilic one: a computational approach based on 3D structural features. Basu S; Sen S J Chem Inf Model; 2009 Jul; 49(7):1741-50. PubMed ID: 19586011 [TBL] [Abstract][Full Text] [Related]
19. Engineering Proteins for Thermostability with iRDP Web Server. Panigrahi P; Sule M; Ghanate A; Ramasamy S; Suresh CG PLoS One; 2015; 10(10):e0139486. PubMed ID: 26436543 [TBL] [Abstract][Full Text] [Related]
20. HORI: a web server to compute Higher Order Residue Interactions in protein structures. Sundaramurthy P; Shameer K; Sreenivasan R; Gakkhar S; Sowdhamini R BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S24. PubMed ID: 20122196 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]