These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 30218538)

  • 21. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.
    Hölttä T; Lintunen A; Chan T; Mäkelä A; Nikinmaa E
    Tree Physiol; 2017 Jul; 37(7):851-868. PubMed ID: 28338800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gas valves, forests and global change: a commentary on Jarvis (1976) 'The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field'.
    Beerling DJ
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1666):. PubMed ID: 25750234
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parsimony vs predictive and functional performance of three stomatal optimization principles in a big-leaf framework.
    Bassiouni M; Vico G
    New Phytol; 2021 Jul; 231(2):586-600. PubMed ID: 33864268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest--an assessment with the biophysical model CANOAK.
    Baldocchi DD; Wilson KB; Gu L
    Tree Physiol; 2002 Nov; 22(15-16):1065-77. PubMed ID: 12414367
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem-respired CO2 in a coastal Douglas-fir forest.
    Cai T; Flanagan LB; Jassal RS; Black TA
    Plant Cell Environ; 2008 Apr; 31(4):435-53. PubMed ID: 18182019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Do all leaf photosynthesis parameters of rice acclimate to elevated CO
    Cai C; Li G; Yang H; Yang J; Liu H; Struik PC; Luo W; Yin X; Di L; Guo X; Jiang W; Si C; Pan G; Zhu J
    Glob Chang Biol; 2018 Apr; 24(4):1685-1707. PubMed ID: 29076597
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stomatal conductance and not stomatal density determines the long-term reduction in leaf transpiration of poplar in elevated CO2.
    Tricker PJ; Trewin H; Kull O; Clarkson GJ; Eensalu E; Tallis MJ; Colella A; Doncaster CP; Sabatti M; Taylor G
    Oecologia; 2005 May; 143(4):652-60. PubMed ID: 15909132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?
    Launiainen S; Katul GG; Kolari P; Lindroth A; Lohila A; Aurela M; Varlagin A; Grelle A; Vesala T
    Glob Chang Biol; 2016 Dec; 22(12):4096-4113. PubMed ID: 27614117
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Seasonal ozone uptake by a warm-temperate mixed deciduous and evergreen broadleaf forest in western Japan estimated by the Penman-Monteith approach combined with a photosynthesis-dependent stomatal model.
    Kitao M; Komatsu M; Hoshika Y; Yazaki K; Yoshimura K; Fujii S; Miyama T; Kominami Y
    Environ Pollut; 2014 Jan; 184():457-63. PubMed ID: 24121421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.).
    Kim SH; Lieth JH
    Ann Bot; 2003 Jun; 91(7):771-81. PubMed ID: 12730065
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimating canopy stomatal conductance and photosynthesis in apple trees by upscaling parameters from the leaf scale to the canopy scale in Jinzhong Basin on Loess Plateau.
    Gao G; Hao Y; Feng Q; Guo X; Shi J; Wu B
    Plant Physiol Biochem; 2023 Sep; 202():107939. PubMed ID: 37557015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Future carbon dioxide concentration decreases canopy evapotranspiration and soil water depletion by field-grown maize.
    Hussain MZ; Vanloocke A; Siebers MH; Ruiz-Vera UM; Cody Markelz RJ; Leakey AD; Ort DR; Bernacchi CJ
    Glob Chang Biol; 2013 May; 19(5):1572-84. PubMed ID: 23505040
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Short-term variation in leaf-level water use efficiency in a tropical forest.
    Davidson KJ; Lamour J; Rogers A; Ely KS; Li Q; McDowell NG; Pivovaroff AL; Wolfe BT; Wright SJ; Zambrano A; Serbin SP
    New Phytol; 2023 Mar; 237(6):2069-2087. PubMed ID: 36527230
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mineral nutrition and elevated [CO(2)] interact to modify δ(13)C, an index of gas exchange, in Norway spruce.
    Marshall JD; Linder S
    Tree Physiol; 2013 Nov; 33(11):1132-44. PubMed ID: 23425689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparing the performance of different stomatal conductance models using modelled and measured plant carbon isotope ratios (δ(13) C): implications for assessing physiological forcing.
    Bodin PE; Gagen M; McCarroll D; Loader NJ; Jalkanen R; Robertson I; Switsur VR; Waterhouse JS; Woodley EJ; Young GH; Alton PB
    Glob Chang Biol; 2013 Jun; 19(6):1709-19. PubMed ID: 23504999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diversity in stomatal function is integral to modelling plant carbon and water fluxes.
    Wolz KJ; Wertin TM; Abordo M; Wang D; Leakey ADB
    Nat Ecol Evol; 2017 Sep; 1(9):1292-1298. PubMed ID: 29046531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulating canopy stomatal conductance of winter wheat and its distribution using remote sensing information.
    Zhang JH; Fu CB; Hiroshi K
    J Environ Sci (China); 2001 Oct; 13(4):439-43. PubMed ID: 11723929
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal stomatal theory predicts CO
    Gardner A; Jiang M; Ellsworth DS; MacKenzie AR; Pritchard J; Bader MK; Barton CVM; Bernacchi C; Calfapietra C; Crous KY; Dusenge ME; Gimeno TE; Hall M; Lamba S; Leuzinger S; Uddling J; Warren J; Wallin G; Medlyn BE
    New Phytol; 2023 Feb; 237(4):1229-1241. PubMed ID: 36373000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patchy stomatal behavior in broad-leaved trees grown in different habitats.
    Takanashi S; Kosugi Y; Matsuo N; Tani M; Ohte N
    Tree Physiol; 2006 Dec; 26(12):1565-78. PubMed ID: 17169896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.