These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 30218686)

  • 1. Optimal control strategies for dengue transmission in pakistan.
    Agusto FB; Khan MA
    Math Biosci; 2018 Nov; 305():102-121. PubMed ID: 30218686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Optimal Age of Vaccination Against Dengue with an Age-Dependent Biting Rate with Application to Brazil.
    Maier SB; Massad E; Amaku M; Burattini MN; Greenhalgh D
    Bull Math Biol; 2020 Jan; 82(1):12. PubMed ID: 31933012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of a Dengue Model with Vertical Transmission and Application to the 2014 Dengue Outbreak in Guangdong Province, China.
    Zou L; Chen J; Feng X; Ruan S
    Bull Math Biol; 2018 Oct; 80(10):2633-2651. PubMed ID: 30083966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vaccination models and optimal control strategies to dengue.
    Rodrigues HS; Monteiro MT; Torres DF
    Math Biosci; 2014 Jan; 247():1-12. PubMed ID: 24513243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An optimal control problem arising from a dengue disease transmission model.
    Aldila D; Götz T; Soewono E
    Math Biosci; 2013 Mar; 242(1):9-16. PubMed ID: 23274179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The optimal age of vaccination against dengue in Brazil based on serotype-specific forces of infection derived from serological data.
    Maier SB; Massad E; Amaku M; Burattini MN; Greenhalgh D
    Math Med Biol; 2021 Mar; 38(1):1-27. PubMed ID: 32671383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative analysis of the relative efficacy of vector-control strategies against dengue fever.
    Amaku M; Coutinho FA; Raimundo SM; Lopez LF; Nascimento Burattini M; Massad E
    Bull Math Biol; 2014 Mar; 76(3):697-717. PubMed ID: 24619807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of demographic and environmental variability on disease outbreak for a dengue model with a seasonally varying vector population.
    Nipa KF; Jang SR; Allen LJS
    Math Biosci; 2021 Jan; 331():108516. PubMed ID: 33253746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mathematical model to study the 2014-2015 large-scale dengue epidemics in Kaohsiung and Tainan cities in Taiwan, China.
    Musa SS; Zhao S; Chan HS; Jin Z; He DH
    Math Biosci Eng; 2019 Apr; 16(5):3841-3863. PubMed ID: 31499639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling the Effect of a Novel Autodissemination Trap on the Spread of Dengue in Shah Alam and Malaysia.
    Liang Y; Ahmad Mohiddin MN; Bahauddin R; Hidayatul FO; Nazni WA; Lee HL; Greenhalgh D
    Comput Math Methods Med; 2019; 2019():1923479. PubMed ID: 31481976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transmission thresholds for dengue in terms of Aedes aegypti pupae per person with discussion of their utility in source reduction efforts.
    Focks DA; Brenner RJ; Hayes J; Daniels E
    Am J Trop Med Hyg; 2000 Jan; 62(1):11-8. PubMed ID: 10761719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneities in dengue spatial-temporal transmission in Brazilian cities and its influence on the optimal age of vaccination.
    Cardim LL; Pinho STR; Teixeira MG; Costa MCN; Esteva ML; Ferreira CP
    BMC Public Health; 2019 Feb; 19(1):155. PubMed ID: 30727988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A discrete time west nile virus transmission model with optimal bird- and vector-specific controls.
    Malik T
    Math Biosci; 2018 Nov; 305():60-70. PubMed ID: 30171883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modeling of dengue epidemic: control methods and vaccination strategies.
    Carvalho SA; da Silva SO; Charret IDC
    Theory Biosci; 2019 Nov; 138(2):223-239. PubMed ID: 30740641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of residence times in two-patch dengue transmission dynamics and optimal strategies.
    Lee S; Castillo-Chavez C
    J Theor Biol; 2015 Jun; 374():152-64. PubMed ID: 25791283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Threshold Dynamics of a Temperature-Dependent Stage-Structured Mosquito Population Model with Nested Delays.
    Wang X; Zou X
    Bull Math Biol; 2018 Jul; 80(7):1962-1987. PubMed ID: 29785519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The economic impact and cost-effectiveness of combined vector-control and dengue vaccination strategies in Thailand: results from a dynamic transmission model.
    Knerer G; Currie CSM; Brailsford SC
    PLoS Negl Trop Dis; 2020 Oct; 14(10):e0008805. PubMed ID: 33095791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal timing of insecticide fogging to minimize dengue cases: modeling dengue transmission among various seasonalities and transmission intensities.
    Oki M; Sunahara T; Hashizume M; Yamamoto T
    PLoS Negl Trop Dis; 2011 Oct; 5(10):e1367. PubMed ID: 22039560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comprehensive Entomological, Serological and Molecular Study of 2013 Dengue Outbreak of Swat, Khyber Pakhtunkhwa, Pakistan.
    Khan J; Khan I; Amin I
    PLoS One; 2016; 11(2):e0147416. PubMed ID: 26848847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity, uncertainty and identifiability analyses to define a dengue transmission model with real data of an endemic municipality of Colombia.
    Lizarralde-Bejarano DP; Rojas-Díaz D; Arboleda-Sánchez S; Puerta-Yepes ME
    PLoS One; 2020; 15(3):e0229668. PubMed ID: 32160217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.