These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 30218690)

  • 1. Multitasking in aging: ERP correlates of dual-task costs in young versus low, intermediate, and high performing older adults.
    Thönes S; Falkenstein M; Gajewski PD
    Neuropsychologia; 2018 Oct; 119():424-433. PubMed ID: 30218690
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multitasking and aging: do older adults benefit from performing a highly practiced task?
    Allen PA; Lien MC; Ruthruff E; Voss A
    Exp Aging Res; 2014; 40(3):280-307. PubMed ID: 24785592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparatory brain activity in dual-tasking.
    Steinhauser R; Steinhauser M
    Neuropsychologia; 2018 Jun; 114():32-40. PubMed ID: 29680251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioral and Neural Correlates of Cognitive-Motor Interference during Multitasking in Young and Old Adults.
    Bohle H; Rimpel J; Schauenburg G; Gebel A; Stelzel C; Heinzel S; Rapp M; Granacher U
    Neural Plast; 2019; 2019():9478656. PubMed ID: 31582967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study.
    Malcolm BR; Foxe JJ; Butler JS; De Sanctis P
    Neuroimage; 2015 Aug; 117():230-42. PubMed ID: 25988225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroimaging of an attention demanding dual-task during dynamic postural control.
    Rosso AL; Cenciarini M; Sparto PJ; Loughlin PJ; Furman JM; Huppert TJ
    Gait Posture; 2017 Sep; 57():193-198. PubMed ID: 28662465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stroop task performance across the lifespan: High cognitive reserve in older age is associated with enhanced proactive and reactive interference control.
    Gajewski PD; Falkenstein M; Thönes S; Wascher E
    Neuroimage; 2020 Feb; 207():116430. PubMed ID: 31805383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aging and working memory performance: Electrophysiological correlates of high and low performing elderly.
    Lubitz AF; Niedeggen M; Feser M
    Neuropsychologia; 2017 Nov; 106():42-51. PubMed ID: 28889995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor-cognitive dual-task performance: effects of a concurrent motor task on distinct components of visual processing capacity.
    Künstler ECS; Finke K; Günther A; Klingner C; Witte O; Bublak P
    Psychol Res; 2018 Jan; 82(1):177-185. PubMed ID: 29196834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serial or overlapping processing in multitasking as individual preference: Effects of stimulus preview on task switching and concurrent dual-task performance.
    Reissland J; Manzey D
    Acta Psychol (Amst); 2016 Jul; 168():27-40. PubMed ID: 27155317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compliance instead of flexibility? On age-related differences in cognitive control during visual search.
    Mertes C; Wascher E; Schneider D
    Neurobiol Aging; 2017 May; 53():169-180. PubMed ID: 28262324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Individual differences in aging and cognitive control modulate the neural indexes of context updating and maintenance during task switching.
    Adrover-Roig D; Barceló F
    Cortex; 2010 Apr; 46(4):434-50. PubMed ID: 19889406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Action scheduling in multitasking: A multi-phase framework of response-order control.
    Pieczykolan A; Huestegge L
    Atten Percept Psychophys; 2019 Jul; 81(5):1464-1487. PubMed ID: 30645728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Individual differences in working memory capacity are reflected in different ERP and EEG patterns to task difficulty.
    Dong S; Reder LM; Yao Y; Liu Y; Chen F
    Brain Res; 2015 Aug; 1616():146-56. PubMed ID: 25976774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-task automatization: The key role of sensory-motor modality compatibility.
    Maquestiaux F; Ruthruff E; Defer A; Ibrahime S
    Atten Percept Psychophys; 2018 Apr; 80(3):752-772. PubMed ID: 29285603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating dual-task interference in children versus young adults with the overlapping task paradigm.
    Strobach T; Karbach J
    J Exp Child Psychol; 2020 Sep; 197():104866. PubMed ID: 32531496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
    Deprez S; Vandenbulcke M; Peeters R; Emsell L; Amant F; Sunaert S
    Neuropsychologia; 2013 Sep; 51(11):2251-60. PubMed ID: 23938320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Practice-related optimization of dual-task performance: Efficient task instantiation during overlapping task processing.
    Schubert T; Strobach T
    J Exp Psychol Hum Percept Perform; 2018 Dec; 44(12):1884-1904. PubMed ID: 30335413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new approach to quantifying the EEG during walking: Initial evidence of gait related potentials and their changes with aging and dual tasking.
    Maidan I; Patashov D; Shustak S; Fahoum F; Gazit E; Shapiro B; Levy A; Sosnik R; Giladi N; Hausdorff JM; Mirelman A
    Exp Gerontol; 2019 Oct; 126():110709. PubMed ID: 31449852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple processing limitations underlie multitasking costs.
    Lui KFH; Wong AC
    Psychol Res; 2020 Oct; 84(7):1946-1964. PubMed ID: 31073770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.