These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 30218897)

  • 1. Simulations of ultrasonic wave propagation in concrete based on a two-dimensional numerical model validated analytically and experimentally.
    Yu T; Chaix JF; Audibert L; Komatitsch D; Garnier V; Hénault JM
    Ultrasonics; 2019 Feb; 92():21-34. PubMed ID: 30218897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An experimental evaluation of two effective medium theories for ultrasonic wave propagation in concrete.
    Chaix JF; Rossat M; Garnier V; Corneloup G
    J Acoust Soc Am; 2012 Jun; 131(6):4481-90. PubMed ID: 22712921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasonic wave propagation in heterogeneous solid media: theoretical analysis and experimental validation.
    Chaix JF; Garnier V; Corneloup G
    Ultrasonics; 2006 Feb; 44(2):200-10. PubMed ID: 16386772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of the effect of heterogeneity on the attenuation of shear waves in concrete.
    Asadollahi A; Khazanovich L
    Ultrasonics; 2019 Jan; 91():34-44. PubMed ID: 30056274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A contactless ultrasonic surface wave approach to characterize distributed cracking damage in concrete.
    Ham S; Song H; Oelze ML; Popovics JS
    Ultrasonics; 2017 Mar; 75():46-57. PubMed ID: 27914306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between experimental and 2-D numerical studies of multiple scattering in Inconel600 by means of array probes.
    Shahjahan S; Rupin F; Aubry A; Chassignole B; Fouquet T; Derode A
    Ultrasonics; 2014 Jan; 54(1):358-67. PubMed ID: 23880120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Study of Concrete Mesostructure Effect on Lamb Wave Propagation.
    Zima B; Kędra R
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32512952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrasonic wave propagation in cementitious materials: a multiphase approach of a self-consistent multiple scattering model.
    Molero M; Segura I; Hernández MG; Izquierdo MA; Anaya JJ
    Ultrasonics; 2011 Jan; 51(1):71-84. PubMed ID: 20619866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical analysis of longitudinal ultrasonic attenuation in sintered materials using a simplified two-phase model.
    Liu D; Turner JA
    J Acoust Soc Am; 2017 Feb; 141(2):1226. PubMed ID: 28253658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressive strength evaluation of structural lightweight concrete by non-destructive ultrasonic pulse velocity method.
    Bogas JA; Gomes MG; Gomes A
    Ultrasonics; 2013 Jul; 53(5):962-72. PubMed ID: 23351273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of coherent surface wave dispersion and attenuation for non-destructive testing of concrete.
    Chekroun M; Le Marrec L; Abraham O; Durand O; Villain G
    Ultrasonics; 2009 Dec; 49(8):743-51. PubMed ID: 19545883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete element method modelling of elastic wave propagation in a meso-scale model of concrete.
    Knak M; Nitka M; Rucka M
    Ultrasonics; 2024 Jul; 141():107336. PubMed ID: 38714061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks.
    Trtnik G; Kavcic F; Turk G
    Ultrasonics; 2009 Jan; 49(1):53-60. PubMed ID: 18589471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-scale finite element modeling of ultrasound propagation in aluminum trabecular bone-mimicking phantoms: A comparison between numerical simulation and experimental results.
    Vafaeian B; Le LH; Tran TN; El-Rich M; El-Bialy T; Adeeb S
    Ultrasonics; 2016 May; 68():17-28. PubMed ID: 26894840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three dimensional image-based simulation of ultrasonic wave propagation in polycrystalline metal using phase-field modeling.
    Nakahata K; Sugahara H; Barth M; Köhler B; Schubert F
    Ultrasonics; 2016 Apr; 67():18-29. PubMed ID: 26773789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Analysis and Strength Estimation of Fresh Concrete Based on Ultrasonic Wave Propagation and Maturity Using Smart Temperature and PZT Sensors.
    Tareen N; Kim J; Kim WK; Park S
    Micromachines (Basel); 2019 Aug; 10(9):. PubMed ID: 31450825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of Ultrasonic Pulse Velocity for Cement, Mortar, and Concrete through a Multiscale Homogenization Approach.
    Jiang J; Zhang D; Gong F; Zhi D
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Boundary Conditions on Numerical Homogenization of High Performance Concrete.
    Denisiewicz A; Kuczma M; Kula K; Socha T
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of guided wave propagation on a plate between two solid bodies with imperfect contact conditions.
    Balvantín AJ; Diosdado-De-la-Peña JA; Limon-Leyva PA; Hernández-Rodríguez E
    Ultrasonics; 2018 Feb; 83():137-145. PubMed ID: 28615109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Feasibility of Stress Wave-Based Debond Defect Detection for RCFSTs Considering the Influence of Randomly Distributed Circular Aggregates with Mesoscale Homogenization Methodology.
    Wang J; Xu B; Liu Q; Guan R; Ma X
    Materials (Basel); 2023 Apr; 16(8):. PubMed ID: 37109956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.