BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 30218927)

  • 1. From electrochemistry to enzyme kinetics of cytochrome P450.
    Shumyantseva VV; Kuzikov AV; Masamrekh RA; Bulko TV; Archakov AI
    Biosens Bioelectron; 2018 Dec; 121():192-204. PubMed ID: 30218927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical investigations of cytochrome P450.
    Shumyantseva VV; Bulko TV; Suprun EV; Chalenko YM; Vagin MY; Rudakov YO; Shatskaya MA; Archakov AI
    Biochim Biophys Acta; 2011 Jan; 1814(1):94-101. PubMed ID: 20650335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors.
    Schneider E; Clark DS
    Biosens Bioelectron; 2013 Jan; 39(1):1-13. PubMed ID: 22809523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new format of electrodes for the electrochemical reduction of cytochromes P450.
    Shumyantseva VV; Bulko TV; Samenkova NF; Kuznetsova GP; Usanov SA; Schulze H; Bachmann TT; Schmid RD; Archakov AI
    J Inorg Biochem; 2006 Aug; 100(8):1353-7. PubMed ID: 16697466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical reduction of cytochrome P450 as an approach to the construction of biosensors and bioreactors.
    Shumyantseva VV; Bulko TV; Archakov AI
    J Inorg Biochem; 2005 May; 99(5):1051-63. PubMed ID: 15833328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Electrochemical reduction of cytochrome P450 as a way for construction of biosensors and bioreactors].
    Shumiantseva VV; Bulko TV; Archakov AI
    Biomed Khim; 2004; 50(3):243-59. PubMed ID: 15354535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytochrome p450 enzymes and electrochemistry: crosstalk with electrodes as redox partners and electron sources.
    Shumyantseva VV; Bulko T; Shich E; Makhova A; Kuzikov A; Archakov A
    Adv Exp Med Biol; 2015; 851():229-46. PubMed ID: 26002738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Electrochemical reduction of cytochrome P450s based on electrodes with immobilized substrates].
    Shumiantseva VV; Bulko TV; Kuznetsova GP; Samenkova NF; Bachman T; Schulze H; Schmid R; Usanov SA; Archakov AI
    Biomed Khim; 2006; 52(1):44-51. PubMed ID: 16739920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochrome P450 biosensors-a review.
    Bistolas N; Wollenberger U; Jung C; Scheller FW
    Biosens Bioelectron; 2005 Jun; 20(12):2408-23. PubMed ID: 15854816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme kinetics of oxidative metabolism: cytochromes P450.
    Korzekwa K
    Methods Mol Biol; 2014; 1113():149-66. PubMed ID: 24523112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry of cytochromes p450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes p450 for the screening of substrates and inhibitors.
    Shumyantseva VV; Bulko TV; Kuznetsova GP; Samenkova NF; Archakov AI
    Biochemistry (Mosc); 2009 Apr; 74(4):438-44. PubMed ID: 19463098
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of ferric cytochrome P450 reduction by NADPH-cytochrome P450 reductase: rapid reduction in the absence of substrate and variations among cytochrome P450 systems.
    Guengerich FP; Johnson WW
    Biochemistry; 1997 Dec; 36(48):14741-50. PubMed ID: 9398194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme Kinetics of Oxidative Metabolism-Cytochromes P450.
    Korzekwa K
    Methods Mol Biol; 2021; 2342():237-256. PubMed ID: 34272697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemistry in the mimicry of oxidative drug metabolism by cytochrome P450s.
    Nouri-Nigjeh E; Bischoff R; Bruins AP; Permentier HP
    Curr Drug Metab; 2011 May; 12(4):359-71. PubMed ID: 21395527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel 96-well quantitative bioelectrocatalytic analysis platform reveals highly efficient direct electrode regeneration of cytochrome P450 BM3 on indium tin oxide.
    Frank R; Klenner M; Azendorf R; Bartz M; Jahnke HG; Robitzki AA
    Biosens Bioelectron; 2017 Jul; 93():322-329. PubMed ID: 27594699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemically driven drug metabolism by membranes containing human cytochrome P450.
    Mie Y; Suzuki M; Komatsu Y
    J Am Chem Soc; 2009 May; 131(19):6646-7. PubMed ID: 19402636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions.
    Jurva U; Wikström HV; Weidolf L; Bruins AP
    Rapid Commun Mass Spectrom; 2003; 17(8):800-10. PubMed ID: 12672134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential behavior of the sub-sites of cytochrome 450 active site in binding of substrates, and products (implications for coupling/uncoupling).
    Narasimhulu S
    Biochim Biophys Acta; 2007 Mar; 1770(3):360-75. PubMed ID: 17134838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic and Electrocatalytic Mechanisms of Cytochromes P450 in the Development of Biosensors and Bioreactors.
    Koroleva PI; Bulko TV; Agafonova LE; Shumyantseva VV
    Biochemistry (Mosc); 2023 Oct; 88(10):1645-1657. PubMed ID: 38105030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration.
    Yoshioka K; Kato D; Kamata T; Niwa O
    Anal Chem; 2013 Nov; 85(21):9996-9. PubMed ID: 24117377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.