These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30218957)
41. Chemical reactivity and antimicrobial activity of N-substituted maleimides. Salewska N; Boros-Majewska J; Lącka I; Chylińska K; Sabisz M; Milewski S; Milewska MJ J Enzyme Inhib Med Chem; 2012 Feb; 27(1):117-24. PubMed ID: 21612375 [TBL] [Abstract][Full Text] [Related]
42. Synthesis and antimicrobial activity of some novel derivatives of benzofuran: part 2. The synthesis and antimicrobial activity of some novel 1-(1-benzofuran-2-yl)-2-mesitylethanone derivatives. Kirilmis C; Ahmedzade M; Servi S; Koca M; Kizirgil A; Kazaz C Eur J Med Chem; 2008 Feb; 43(2):300-8. PubMed ID: 17513022 [TBL] [Abstract][Full Text] [Related]
43. Synthesis, evaluation and modeling of some triazolothienopyrimidinones as anti-inflammatory and antimicrobial agents. Bekhit AA; Farghaly AM; Shafik RM; Elsemary MM; El-Shoukrofy MS; Bekhit AEA; Ibrahim TM Future Med Chem; 2017 Jun; 9(9):881-897. PubMed ID: 28635307 [TBL] [Abstract][Full Text] [Related]
44. Antimicrobial and acetylcholinesterase inhibitory activities of Buddleja salviifolia (L.) Lam. leaf extracts and isolated compounds. Pendota SC; Aderogba MA; Ndhlala AR; Van Staden J J Ethnopharmacol; 2013 Jul; 148(2):515-20. PubMed ID: 23665162 [TBL] [Abstract][Full Text] [Related]
45. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Gu W; Qiao C; Wang SF; Hao Y; Miao TT Bioorg Med Chem Lett; 2014 Jan; 24(1):328-31. PubMed ID: 24300736 [TBL] [Abstract][Full Text] [Related]
46. 1,4-benzoxazin-3-one, 2-benzoxazolinone and gallic acid from Calceolaria thyrsiflora Graham and their antibacterial activity. Bravo HR; Copaja SV; Figueroa-Duarte S; Lamborot M; San Martín J Z Naturforsch C J Biosci; 2005; 60(5-6):389-93. PubMed ID: 16042337 [TBL] [Abstract][Full Text] [Related]
47. Synthesis and antimicrobial properties of naphthylamine derivatives having a thiazolidinone moiety. Petrikaitė V; Tarasevičius E; Pavilonis A Medicina (Kaunas); 2011; 47(6):334-9. PubMed ID: 21968886 [TBL] [Abstract][Full Text] [Related]
48. Synthesis of 4-hydroxycoumarin heteroarylhybrids as potential antimicrobial agents. Siddiqui ZN; N MM; Ahmad A; Khan AU Arch Pharm (Weinheim); 2011 Jun; 344(6):394-401. PubMed ID: 21647940 [TBL] [Abstract][Full Text] [Related]
49. Screening of in vitro antimicrobial activity of plants used in traditional Indonesian medicine. Romulo A; Zuhud EAM; Rondevaldova J; Kokoska L Pharm Biol; 2018 Dec; 56(1):287-293. PubMed ID: 29656672 [TBL] [Abstract][Full Text] [Related]
50. Synthesis of coumarin-theophylline hybrids as a new class of anti-tubercular and anti-microbial agents. Mangasuli SN; Hosamani KM; Devarajegowda HC; Kurjogi MM; Joshi SD Eur J Med Chem; 2018 Feb; 146():747-756. PubMed ID: 29407993 [TBL] [Abstract][Full Text] [Related]
51. Synthesis, antibacterial and antifungal activities of bifonazole derivatives. El Hage S; Lajoie B; Feuillolay C; Roques C; Baziard G Arch Pharm (Weinheim); 2011 Jun; 344(6):402-10. PubMed ID: 21433056 [TBL] [Abstract][Full Text] [Related]
52. Synthesis and antimicrobial activity of novel amphiphilic aromatic amino alcohols. de Almeida AM; Nascimento T; Ferreira BS; de Castro PP; Silva VL; Diniz CG; Le Hyaric M Bioorg Med Chem Lett; 2013 May; 23(10):2883-7. PubMed ID: 23587426 [TBL] [Abstract][Full Text] [Related]
53. Antimicrobial activity of newly synthesized methylsulfanyl-triazoloquinazoline derivatives. Al-Salahi R; Marzouk M; Awad G; Al-Omar M; Ezzeldin E J Pharm Pharmacol; 2013 Jun; 65(6):790-7. PubMed ID: 23647672 [TBL] [Abstract][Full Text] [Related]
54. Facile Synthesis, Characterization, and Antimicrobial Evaluation of Novel Heterocycles, Schiff Bases, and N-Nucleosides Bearing Phthalazine Moiety. Azab ME; Rizk SA; Mahmoud NF Chem Pharm Bull (Tokyo); 2016; 64(5):439-50. PubMed ID: 27150476 [TBL] [Abstract][Full Text] [Related]
55. Efficient synthesis, structure, and antimicrobial activity of some novel N- and S-beta-D-glucosides of 5-pyridin-3-yl-1,2,4-triazoles. Khalil NS Carbohydr Res; 2006 Sep; 341(13):2187-99. PubMed ID: 16839524 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of riccardin D derivatives as potent antimicrobial agents. Sun B; Zhang M; Li Y; Hu QW; Zheng HB; Chang WQ; Lou HX Bioorg Med Chem Lett; 2016 Aug; 26(15):3617-20. PubMed ID: 27297569 [TBL] [Abstract][Full Text] [Related]
57. Antimicrobial potential of actinobacteria isolated from the rhizosphere of the Caatinga biome plant Caesalpinia pyramidalis Tul. Silva-Lacerda GR; Santana RC; Vicalvi-Costa MC; Solidônio EG; Sena KX; Lima GM; Araújo JM Genet Mol Res; 2016 Mar; 15(1):15017488. PubMed ID: 26985927 [TBL] [Abstract][Full Text] [Related]
58. Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with gastrointestinal relevance. Tekwu EM; Pieme AC; Beng VP J Ethnopharmacol; 2012 Jun; 142(1):265-73. PubMed ID: 22583961 [TBL] [Abstract][Full Text] [Related]
59. Antimicrobial Activity of neo-Clerodane Diterpenoids isolated from Lamiaceae Species against Pathogenic and Food Spoilage Microorganisms. Bozov P; Girova T; Prisadova N; Hristova Y; Gochev V Nat Prod Commun; 2015 Nov; 10(11):1797-800. PubMed ID: 26749799 [TBL] [Abstract][Full Text] [Related]
60. Predicting antimicrobial peptides from eukaryotic genomes: in silico strategies to develop antibiotics. Amaral AC; Silva ON; Mundim NC; de Carvalho MJ; Migliolo L; Leite JR; Prates MV; Bocca AL; Franco OL; Felipe MS Peptides; 2012 Oct; 37(2):301-8. PubMed ID: 22884922 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]