BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30218973)

  • 1. Optimizing the deformation behavior of stent with nonuniform Poisson's ratio distribution for curved artery.
    Han Y; Lu W
    J Mech Behav Biomed Mater; 2018 Dec; 88():442-452. PubMed ID: 30218973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stent expansion in curved vessel and their interactions: a finite element analysis.
    Wu W; Wang WQ; Yang DZ; Qi M
    J Biomech; 2007; 40(11):2580-5. PubMed ID: 17198706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational analysis of the deformation of the femoropopliteal artery with stenting.
    Ní Ghriallais R; Bruzzi M
    J Biomech Eng; 2014 Jul; 136(7):. PubMed ID: 24686902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations.
    Conti M; Van Loo D; Auricchio F; De Beule M; De Santis G; Verhegghe B; Pirrelli S; Odero A
    J Endovasc Ther; 2011 Jun; 18(3):397-406. PubMed ID: 21679082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated biomechanical responses at a curved arterial segment after Wingspan Stent deployment in swine.
    Fujimoto M; Shobayashi Y; Tateshima S; Vinters HV; Viñuela F
    Neurol Res; 2013 Jul; 35(6):631-5. PubMed ID: 23561323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of Self-Expanding Auxetic Stents Using Topology Optimization.
    Xue H; Luo Z; Brown T; Beier S
    Front Bioeng Biotechnol; 2020; 8():736. PubMed ID: 32766219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carotid artery stenting simulation: from patient-specific images to finite element analysis.
    Auricchio F; Conti M; De Beule M; De Santis G; Verhegghe B
    Med Eng Phys; 2011 Apr; 33(3):281-9. PubMed ID: 21067964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro experiments of vessel wall apposition between the Enterprise and Enterprise 2 stents for treatment of cerebral aneurysms.
    Kono K; Terada T
    Acta Neurochir (Wien); 2016 Feb; 158(2):241-5. PubMed ID: 26687376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of simulated structural deformation with experimental results after Wingspan stenting.
    Fujimoto M; Shobayashi Y; Tateshima S; Sudo R; Tanishita K; Viñuela F
    Neurol Res; 2014 Aug; 36(8):752-6. PubMed ID: 24620967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design optimization of stent and its dilatation balloon using kriging surrogate model.
    Li H; Liu T; Wang M; Zhao D; Qiao A; Wang X; Gu J; Li Z; Zhu B
    Biomed Eng Online; 2017 Jan; 16(1):13. PubMed ID: 28086895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of the stent expansion in a stenosed artery using finite element method: application to stent versus stent study.
    Imani SM; Goudarzi AM; Ghasemi SE; Kalani A; Mahdinejad J
    Proc Inst Mech Eng H; 2014 Oct; 228(10):996-1004. PubMed ID: 25406228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An argument for the use of multiple segment stents in curved arteries.
    Kasiri S; Kelly DJ
    J Biomech Eng; 2011 Aug; 133(8):084501. PubMed ID: 21950903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation of the Femoropopliteal Segment: Effect of Stent Length, Location, Flexibility, and Curvature.
    Ní Ghriallais R; Heraty K; Smouse B; Burke M; Gilson P; Bruzzi M
    J Endovasc Ther; 2016 Dec; 23(6):907-918. PubMed ID: 27647689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
    LaDisa JF; Olson LE; Guler I; Hettrick DA; Kersten JR; Warltier DC; Pagel PS
    J Appl Physiol (1985); 2005 Mar; 98(3):947-57. PubMed ID: 15531564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element simulation method to evaluate the crimpability of curved stents.
    Praveen Kumar G; Louis Commillus A; Cui F
    Med Eng Phys; 2019 Dec; 74():162-165. PubMed ID: 31635945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of asymmetric stent for treatment of eccentric plaque.
    Syaifudin A; Takeda R; Sasaki K
    Biomed Mater Eng; 2018; 29(3):299-317. PubMed ID: 29578470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis.
    Wu W; Qi M; Liu XP; Yang DZ; Wang WQ
    J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.