These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30218988)

  • 1. Assessing omniphobicity by immersion.
    Arunachalam S; Das R; Nauruzbayeva J; Domingues EM; Mishra H
    J Colloid Interface Sci; 2019 Jan; 534():156-162. PubMed ID: 30218988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rendering SiO2/Si Surfaces Omniphobic by Carving Gas-Entrapping Microtextures Comprising Reentrant and Doubly Reentrant Cavities or Pillars.
    Arunachalam S; Domingues EM; Das R; Nauruzbayeva J; Buttner U; Syed A; Mishra H
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces.
    Domingues EM; Arunachalam S; Mishra H
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21532-21538. PubMed ID: 28580784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic coating-free surfaces for long-term entrapment of air under wetting liquids.
    Domingues EM; Arunachalam S; Nauruzbayeva J; Mishra H
    Nat Commun; 2018 Sep; 9(1):3606. PubMed ID: 30190456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing the accuracy of contact angle measurements for sessile drops on liquid-repellent surfaces.
    Srinivasan S; McKinley GH; Cohen RE
    Langmuir; 2011 Nov; 27(22):13582-9. PubMed ID: 21923173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flexible and Stable Omniphobic Surfaces Based on Biomimetic Repulsive Air-Spring Structures.
    Seo D; Cha SK; Kim G; Shin H; Hong S; Cho YH; Chun H; Choi Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5877-5884. PubMed ID: 30648844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, surface properties, and origin of superoleophobicity for a model textured surface.
    Zhao H; Law KY; Sambhy V
    Langmuir; 2011 May; 27(10):5927-35. PubMed ID: 21486088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic Coating-free Superomniphobicity.
    Das R; Ahmad Z; Nauruzbayeva J; Mishra H
    Sci Rep; 2020 May; 10(1):7934. PubMed ID: 32404874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of roughness geometry on wetting and dewetting of rough PDMS surfaces.
    Kanungo M; Mettu S; Law KY; Daniel S
    Langmuir; 2014 Jul; 30(25):7358-68. PubMed ID: 24911256
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Condensation-Resistant Omniphobic Surfaces.
    Wilke KL; Preston DJ; Lu Z; Wang EN
    ACS Nano; 2018 Nov; 12(11):11013-11021. PubMed ID: 30299928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing dynamic tensiometry to quantify contact angle hysteresis and wetting state transitions on nonwetting surfaces.
    Kleingartner JA; Srinivasan S; Mabry JM; Cohen RE; McKinley GH
    Langmuir; 2013 Nov; 29(44):13396-406. PubMed ID: 24070378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Omniphobic Metal Surfaces with Low Contact Angle Hysteresis and Tilt Angles.
    Singh N; Kakiuchida H; Sato T; Hönes R; Yagihashi M; Urata C; Hozumi A
    Langmuir; 2018 Sep; 34(38):11405-11413. PubMed ID: 30207475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes.
    Rangel TC; Michels AF; Horowitz F; Weibel DE
    Langmuir; 2015 Mar; 31(11):3465-72. PubMed ID: 25714008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability.
    Boban M; Golovin K; Tobelmann B; Gupte O; Mabry JM; Tuteja A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11406-11413. PubMed ID: 29554432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Durable omniphobicity of oil-impregnated anodic aluminum oxide nanostructured surfaces.
    Lee J; Jiang Y; Hizal F; Ban GH; Jun S; Choi CH
    J Colloid Interface Sci; 2019 Oct; 553():734-745. PubMed ID: 31254871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensiometric Characterization of Superhydrophobic Surfaces As Compared to the Sessile and Bouncing Drop Methods.
    Hisler V; Jendoubi H; Hairaye C; Vonna L; Le Houérou V; Mermet F; Nardin M; Haidara H
    Langmuir; 2016 Aug; 32(31):7765-73. PubMed ID: 27408983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures.
    Panter JR; Kusumaatmaja H
    J Phys Condens Matter; 2017 Mar; 29(8):084001. PubMed ID: 28092626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-Fluorinated Omniphobic Paper with Ultralow Contact Angle Hysteresis.
    Zhao X; Khandoker MAR; Golovin K
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15748-15756. PubMed ID: 32142254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact angles of liquid drops on super hydrophobic surfaces: understanding the role of flattening of drops by gravity.
    Extrand CW; Moon SI
    Langmuir; 2010 Nov; 26(22):17090-9. PubMed ID: 20964303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.
    Di Mundo R; Bottiglione F; Palumbo F; Notarnicola M; Carbone G
    J Colloid Interface Sci; 2016 Nov; 482():175-182. PubMed ID: 27501041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.