These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 30219021)
1. Relating Franck-Condon blockade to redox chemistry in the single-particle picture. Bevan KH; Roy-Gobeil A; Miyahara Y; Grutter P J Chem Phys; 2018 Sep; 149(10):104109. PubMed ID: 30219021 [TBL] [Abstract][Full Text] [Related]
2. Fully Quantized Electron Transfer Observed in a Single Redox Molecule at a Metal Interface. Roy-Gobeil A; Miyahara Y; Bevan KH; Grutter P Nano Lett; 2019 Sep; 19(9):6104-6108. PubMed ID: 31429580 [TBL] [Abstract][Full Text] [Related]
3. Redox-Dependent Franck-Condon Blockade and Avalanche Transport in a Graphene-Fullerene Single-Molecule Transistor. Lau CS; Sadeghi H; Rogers G; Sangtarash S; Dallas P; Porfyrakis K; Warner J; Lambert CJ; Briggs GA; Mol JA Nano Lett; 2016 Jan; 16(1):170-6. PubMed ID: 26633125 [TBL] [Abstract][Full Text] [Related]
4. Franck-Condon blockade and giant Fano factors in transport through single molecules. Koch J; von Oppen F Phys Rev Lett; 2005 May; 94(20):206804. PubMed ID: 16090269 [TBL] [Abstract][Full Text] [Related]
5. Franck-Condon Blockade and Aggregation-Modulated Conductance in Molecular Devices Using Aggregation-Induced Emission-Active Molecules. Tian G; Sun D; Zhang Y; Yu X Angew Chem Int Ed Engl; 2019 Apr; 58(18):5951-5955. PubMed ID: 30791190 [TBL] [Abstract][Full Text] [Related]
6. Potential-Energy Surfaces, the Born-Oppenheimer Approximations, and the Franck-Condon Principle: Back to the Roots. Mustroph H Chemphyschem; 2016 Sep; 17(17):2616-29. PubMed ID: 27346879 [TBL] [Abstract][Full Text] [Related]
7. Electron transfer from the perspective of electron transmission: Biased non-adiabatic intermolecular reactions in the single-particle picture. Bevan KH J Chem Phys; 2017 Apr; 146(13):134106. PubMed ID: 28390381 [TBL] [Abstract][Full Text] [Related]
8. First principles simulation of the UV absorption spectrum of ethylene using the vertical Franck-Condon approach. Hazra A; Chang HH; Nooijen M J Chem Phys; 2004 Aug; 121(5):2125-36. PubMed ID: 15260766 [TBL] [Abstract][Full Text] [Related]
9. Franck-Condon blockade in a single-molecule transistor. Burzurí E; Yamamoto Y; Warnock M; Zhong X; Park K; Cornia A; van der Zant HS Nano Lett; 2014 Jun; 14(6):3191-6. PubMed ID: 24801879 [TBL] [Abstract][Full Text] [Related]
10. Franck-Condon picture of incoherent neutron scattering. Kneller GR Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9450-9455. PubMed ID: 30166450 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness of perturbation theory approaches for computing non-condon electron transfer dynamics in condensed phases. Cook WR; Coalson RD; Evans DG J Phys Chem B; 2009 Aug; 113(33):11437-47. PubMed ID: 19630413 [TBL] [Abstract][Full Text] [Related]
12. Thermodynamics of the polaron master equation at finite bias. Krause T; Brandes T; Esposito M; Schaller G J Chem Phys; 2015 Apr; 142(13):134106. PubMed ID: 25854227 [TBL] [Abstract][Full Text] [Related]
13. Using resonance Raman spectroscopy to examine vibrational barriers to electron transfer and electronic delocalization. Hupp JT; Williams RD Acc Chem Res; 2001 Oct; 34(10):808-17. PubMed ID: 11601965 [TBL] [Abstract][Full Text] [Related]
14. Nonequilibrium site distribution governs charge-transfer electroluminescence at disordered organic heterointerfaces. Melianas A; Felekidis N; Puttisong Y; Meskers SCJ; Inganäs O; Chen WM; Kemerink M Proc Natl Acad Sci U S A; 2019 Nov; 116(47):23416-23425. PubMed ID: 31690666 [TBL] [Abstract][Full Text] [Related]
15. Validity of the Franck-Condon principle in the optical spectroscopy: optical conductivity of the Fröhlich polaron. De Filippis G; Cataudella V; Mishchenko AS; Perroni CA; Devreese JT Phys Rev Lett; 2006 Apr; 96(13):136405. PubMed ID: 16712012 [TBL] [Abstract][Full Text] [Related]
16. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine. Wang H; Zhu C; Yu JG; Lin SH J Phys Chem A; 2009 Dec; 113(52):14407-14. PubMed ID: 19572679 [TBL] [Abstract][Full Text] [Related]
17. Extension of Hopfield's Electron Transfer Model To Accommodate Site-Site Correlation. Newton MD J Phys Chem B; 2015 Nov; 119(46):14728-37. PubMed ID: 26501566 [TBL] [Abstract][Full Text] [Related]
18. On the quantum theory of electron transfer: effect of potential surfaces of the reactants and products. Banerjee S; Gangopadhyay G J Chem Phys; 2007 Jan; 126(3):034102. PubMed ID: 17249860 [TBL] [Abstract][Full Text] [Related]
19. Electron transport in nanoscale junctions with local anharmonic modes. Simine L; Segal D J Chem Phys; 2014 Jul; 141(1):014704. PubMed ID: 25005300 [TBL] [Abstract][Full Text] [Related]
20. Non-renewal statistics for electron transport in a molecular junction with electron-vibration interaction. Kosov DS J Chem Phys; 2017 Sep; 147(10):104109. PubMed ID: 28915753 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]