BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30219226)

  • 1. Effects of polarized and non-polarized red-light irradiation on proliferation of human Wharton's jelly-derived mesenchymal cells.
    Babaee A; Nematollahi-Mahani SN; Shojaei M; Dehghani-Soltani S; Ezzatabadipour M
    Biochem Biophys Res Commun; 2018 Oct; 504(4):871-877. PubMed ID: 30219226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Low-Level Laser Irradiation on Proliferative Activity of Wharton's Jelly Mesenchymal Stromal Cells.
    Vakhrushev IV; Yusupov VI; Raeva OS; Pyatnitskiy MA; Bagratashvili VN
    Bull Exp Biol Med; 2019 May; 167(1):136-139. PubMed ID: 31183648
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photobiomodulation and gametogenic potential of human Wharton's jelly-derived mesenchymal cells.
    Babaee A; Nematollahi-Mahani SN; Dehghani-Soltani S; Shojaei M; Ezzatabadipour M
    Biochem Biophys Res Commun; 2019 Jun; 514(1):239-245. PubMed ID: 31029424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wharton's Jelly stem cells: future clinical applications.
    Taghizadeh RR; Cetrulo KJ; Cetrulo CL
    Placenta; 2011 Oct; 32 Suppl 4():S311-5. PubMed ID: 21733573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells.
    Dehghani Soltani S; Babaee A; Shojaei M; Salehinejad P; Seyedi F; JalalKamali M; Nematollahi-Mahani SN
    Lasers Med Sci; 2016 Feb; 31(2):255-61. PubMed ID: 26714979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly.
    Salehinejad P; Alitheen NB; Ali AM; Omar AR; Mohit M; Janzamin E; Samani FS; Torshizi Z; Nematollahi-Mahani SN
    In Vitro Cell Dev Biol Anim; 2012 Feb; 48(2):75-83. PubMed ID: 22274909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative analysis of human Wharton's jelly mesenchymal stem cells derived from different parts of the same umbilical cord.
    Bharti D; Shivakumar SB; Park JK; Ullah I; Subbarao RB; Park JS; Lee SL; Park BW; Rho GJ
    Cell Tissue Res; 2018 Apr; 372(1):51-65. PubMed ID: 29204746
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of mesenchymal stem cells derived from Wharton's jelly of human umbilical cord and for fabrication of non-scaffold tissue-engineered cartilage.
    Liu S; Hou KD; Yuan M; Peng J; Zhang L; Sui X; Zhao B; Xu W; Wang A; Lu S; Guo Q
    J Biosci Bioeng; 2014 Feb; 117(2):229-235. PubMed ID: 23899897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vitrification of human umbilical cord Wharton's jelly-derived mesenchymal stem cells.
    Massood E; Maryam K; Parvin S; Mojgan M; Noureddin NM
    Cryo Letters; 2013; 34(5):471-80. PubMed ID: 24448767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Preterm and Term Wharton's Jelly-Derived Mesenchymal Stem Cell Properties in Different Oxygen Tensions.
    Balgi-Agarwal S; Winter C; Corral A; Mustafa SB; Hornsby P; Moreira A
    Cells Tissues Organs; 2018; 205(3):137-150. PubMed ID: 29949803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Decellularized Native Extracellular Matrix Scaffold for In Vitro Culture Expansion of Human Wharton's Jelly-Derived Mesenchymal Stem Cells (hWJ MSCs).
    Sundaram B; Cherian AG; Kumar S
    Methods Mol Biol; 2018; 1577():35-53. PubMed ID: 28963712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia with Wharton's jelly mesenchymal stem cell coculture maintains stemness of umbilical cord blood-derived CD34
    Zhao D; Liu L; Chen Q; Wang F; Li Q; Zeng Q; Huang J; Luo M; Li W; Zheng Y; Liu T
    Stem Cell Res Ther; 2018 Jun; 9(1):158. PubMed ID: 29895317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of nicotine on the proliferation and chondrogenic differentiation of the human Wharton's jelly mesenchymal stem cells.
    Yang X; Qi Y; Avercenc-Leger L; Vincourt JB; Hupont S; Huselstein C; Wang H; Chen L; Magdalou J
    Biomed Mater Eng; 2017; 28(s1):S217-S228. PubMed ID: 28372298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of canine Wharton's jelly-derived mesenchymal stem cells.
    Seo MS; Park SB; Kang KS
    Cell Transplant; 2012; 21(7):1493-502. PubMed ID: 22732242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [In vitro evaluation of chondrocytes combined with Wharton's jelly of human umbilical cord oriented scaffold].
    Lü H; Xu G; Gai Y; Chen L; Liu S; Zhao P; Lu S; Zhang L; Quanyi G; Yang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Aug; 28(8):1017-22. PubMed ID: 25417319
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of light emitting diode irradiation on neural differentiation of human umbilical cord-derived mesenchymal cells.
    Dehghani-Soltani S; Shojaee M; Jalalkamali M; Babaee A; Nematollahi-Mahani SN
    Sci Rep; 2017 Aug; 7(1):9976. PubMed ID: 28855704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteogenic differentiation of human mesenchymal stem cells from adipose tissue and Wharton's jelly of the umbilical cord.
    Zajdel A; Kałucka M; Kokoszka-Mikołaj E; Wilczok A
    Acta Biochim Pol; 2017; 64(2):365-369. PubMed ID: 28600911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human umbilical cord Wharton's jelly stem cells and its conditioned medium support hematopoietic stem cell expansion ex vivo.
    Fong CY; Gauthaman K; Cheyyatraivendran S; Lin HD; Biswas A; Bongso A
    J Cell Biochem; 2012 Feb; 113(2):658-68. PubMed ID: 21976004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Wharton's jelly mesenchymal stem cell secretome display antiproliferative effect on leukemia cell line and produce additive cytotoxic effect in combination with doxorubicin.
    Hendijani F; Javanmard SH; Sadeghi-aliabadi H
    Tissue Cell; 2015 Jun; 47(3):229-34. PubMed ID: 25779671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The red-light emitting diode irradiation increases proliferation of human bone marrow mesenchymal stem cells preserving their immunophenotype.
    Lewandowski RB; Stępińska M; Gietka A; Dobrzyńska M; Łapiński MP; Trafny EA
    Int J Radiat Biol; 2021; 97(4):553-563. PubMed ID: 33471577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.