These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30219282)

  • 1. Pest demography critically determines the viability of synthetic gene drives for population control.
    Wilkins KE; Prowse TAA; Cassey P; Thomas PQ; Ross JV
    Math Biosci; 2018 Nov; 305():160-169. PubMed ID: 30219282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene drives for vertebrate pest control: Realistic spatial modelling of eradication probabilities and times for island mouse populations.
    Birand A; Cassey P; Ross JV; Russell JC; Thomas P; Prowse TAA
    Mol Ecol; 2022 Mar; 31(6):1907-1923. PubMed ID: 35073448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dodging silver bullets: good CRISPR gene-drive design is critical for eradicating exotic vertebrates.
    Prowse TAA; Cassey P; Ross JV; Pfitzner C; Wittmann TA; Thomas P
    Proc Biol Sci; 2017 Aug; 284(1860):. PubMed ID: 28794219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling CRISPR gene drives for suppression of invasive rodents using a supervised machine learning framework.
    Champer SE; Oakes N; Sharma R; García-Díaz P; Champer J; Messer PW
    PLoS Comput Biol; 2021 Dec; 17(12):e1009660. PubMed ID: 34965253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlling invasive rodents via synthetic gene drive and the role of polyandry.
    Manser A; Cornell SJ; Sutter A; Blondel DV; Serr M; Godwin J; Price TAR
    Proc Biol Sci; 2019 Aug; 286(1909):20190852. PubMed ID: 31431159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Y-chromosome shredding gene drive for controlling pest vertebrate populations.
    Prowse TA; Adikusuma F; Cassey P; Thomas P; Ross JV
    Elife; 2019 Feb; 8():. PubMed ID: 30767891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel combination of CRISPR-based gene drives eliminates resistance and localises spread.
    Faber NR; McFarlane GR; Gaynor RC; Pocrnic I; Whitelaw CBA; Gorjanc G
    Sci Rep; 2021 Mar; 11(1):3719. PubMed ID: 33664305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double drives and private alleles for localised population genetic control.
    Willis K; Burt A
    PLoS Genet; 2021 Mar; 17(3):e1009333. PubMed ID: 33755671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The creation and selection of mutations resistant to a gene drive over multiple generations in the malaria mosquito.
    Hammond AM; Kyrou K; Bruttini M; North A; Galizi R; Karlsson X; Kranjc N; Carpi FM; D'Aurizio R; Crisanti A; Nolan T
    PLoS Genet; 2017 Oct; 13(10):e1007039. PubMed ID: 28976972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining tactics to exploit Allee effects for eradication of alien insect populations.
    Suckling DM; Tobin PC; McCullough DG; Herms DA
    J Econ Entomol; 2012 Feb; 105(1):1-13. PubMed ID: 22420248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene drives for invasive wasp control: Extinction is unlikely, with suppression dependent on dispersal and growth rates.
    Lester PJ; O'Sullivan D; Perry GLW
    Ecol Appl; 2023 Oct; 33(7):e2912. PubMed ID: 37615220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential for a CRISPR gene drive to eradicate or suppress globally invasive social wasps.
    Lester PJ; Bulgarella M; Baty JW; Dearden PK; Guhlin J; Kean JM
    Sci Rep; 2020 Jul; 10(1):12398. PubMed ID: 32709966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gene drive for population genetic control: non-functional resistance and parental effects.
    Beaghton AK; Hammond A; Nolan T; Crisanti A; Burt A
    Proc Biol Sci; 2019 Nov; 286(1914):20191586. PubMed ID: 31662083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rodent gene drives for conservation: opportunities and data needs.
    Godwin J; Serr M; Barnhill-Dilling SK; Blondel DV; Brown PR; Campbell K; Delborne J; Lloyd AL; Oh KP; Prowse TAA; Saah R; Thomas P
    Proc Biol Sci; 2019 Nov; 286(1914):20191606. PubMed ID: 31690240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catch Me If You Can: A Spatial Model for a Brake-Driven Gene Drive Reversal.
    Girardin L; Calvez V; Débarre F
    Bull Math Biol; 2019 Dec; 81(12):5054-5088. PubMed ID: 31606790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current CRISPR gene drive systems are likely to be highly invasive in wild populations.
    Noble C; Adlam B; Church GM; Esvelt KM; Nowak MA
    Elife; 2018 Jun; 7():. PubMed ID: 29916367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locally Fixed Alleles: A method to localize gene drive to island populations.
    Sudweeks J; Hollingsworth B; Blondel DV; Campbell KJ; Dhole S; Eisemann JD; Edwards O; Godwin J; Howald GR; Oh KP; Piaggio AJ; Prowse TAA; Ross JV; Saah JR; Shiels AB; Thomas PQ; Threadgill DW; Vella MR; Gould F; Lloyd AL
    Sci Rep; 2019 Nov; 9(1):15821. PubMed ID: 31676762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cascade of destabilizations: Combining Wolbachia and Allee effects to eradicate insect pests.
    Blackwood JC; Vargas R; Fauvergue X
    J Anim Ecol; 2018 Jan; 87(1):59-72. PubMed ID: 28913925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Drive Dynamics in Natural Populations: The Importance of Density Dependence, Space, and Sex.
    Dhole S; Lloyd AL; Gould F
    Annu Rev Ecol Evol Syst; 2020 Nov; 51(1):505-531. PubMed ID: 34366722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal Culling and Biocontrol in a Predator-Prey Model.
    Numfor E; Hilker FM; Lenhart S
    Bull Math Biol; 2017 Jan; 79(1):88-116. PubMed ID: 27800577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.