These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30219573)

  • 21. Sugarcane bagasse oxidation using a combination of hypochlorite and peroxide.
    Lee YJ; Chung CH; Day DF
    Bioresour Technol; 2009 Jan; 100(2):935-41. PubMed ID: 18693013
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.
    Ohashi Y; Uno Y; Amirta R; Watanabe T; Honda Y; Watanabe T
    Org Biomol Chem; 2011 Apr; 9(7):2481-91. PubMed ID: 21327224
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First-principles study on the heterogeneous formation of environmentally persistent free radicals (EPFRs) over α-Fe
    Pan W; He S; Xue Q; Liu X; Fu J; Xiao K; Zhang A
    J Environ Sci (China); 2024 Aug; 142():279-289. PubMed ID: 38527893
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production, characterization, and biogas application of magnetic hydrochar from cellulose.
    Reza MT; Rottler E; Tölle R; Werner M; Ramm P; Mumme J
    Bioresour Technol; 2015 Jun; 186():34-43. PubMed ID: 25804500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Assessment of the Fe(III)-EDDS complex in Fenton-like processes: from the radical formation to the degradation of bisphenol A.
    Huang W; Brigante M; Wu F; Mousty C; Hanna K; Mailhot G
    Environ Sci Technol; 2013 Feb; 47(4):1952-9. PubMed ID: 23343005
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Behavior of selected hydrolyzed and dehydrated products during hydrothermal carbonization of biomass.
    Reza MT; Wirth B; Lüder U; Werner M
    Bioresour Technol; 2014 Oct; 169():352-361. PubMed ID: 25063978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The influence of combined pretreatment with surfactant/ultrasonic and hydrothermal carbonization on fuel properties, pyrolysis and combustion behavior of corn stalk.
    Xu X; Tu R; Sun Y; Wu Y; Jiang E; Zhen J
    Bioresour Technol; 2019 Jan; 271():427-438. PubMed ID: 30343135
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.
    Kim KH; Bai X; Cady S; Gable P; Brown RC
    ChemSusChem; 2015 Mar; 8(5):894-900. PubMed ID: 25677712
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dioxygen-Derived Nonheme Mononuclear Fe
    Yadav V; Gordon JB; Siegler MA; Goldberg DP
    J Am Chem Soc; 2019 Jul; 141(26):10148-10153. PubMed ID: 31244183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrothermal carbonization of lignocellulosic biomass.
    Xiao LP; Shi ZJ; Xu F; Sun RC
    Bioresour Technol; 2012 Aug; 118():619-23. PubMed ID: 22698445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Co-hydrothermal carbonization of lignocellulosic biomass and swine manure: Hydrochar properties and heavy metal transformation behavior.
    Lang Q; Guo Y; Zheng Q; Liu Z; Gai C
    Bioresour Technol; 2018 Oct; 266():242-248. PubMed ID: 29982044
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation.
    Li H; Pan B; Liao S; Zhang D; Xing B
    Environ Pollut; 2014 May; 188():153-8. PubMed ID: 24594596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Correlation of Persistent Free Radicals, PCDD/Fs and Metals in Waste Incineration Fly Ash].
    Wang TJ; Chen T; Zhan MX; Guo Y; Li XD
    Huan Jing Ke Xue; 2016 Mar; 37(3):1163-70. PubMed ID: 27337914
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation of p-Nitrophenol by Lignin and Cellulose Chars: H
    Yang J; Pignatello JJ; Pan B; Xing B
    Environ Sci Technol; 2017 Aug; 51(16):8972-8980. PubMed ID: 28686427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review.
    Qin Y; Li G; Gao Y; Zhang L; Ok YS; An T
    Water Res; 2018 Jun; 137():130-143. PubMed ID: 29547776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pretreatment of lignocellulosic biomass using Fenton chemistry.
    Kato DM; Elía N; Flythe M; Lynn BC
    Bioresour Technol; 2014 Jun; 162():273-8. PubMed ID: 24759643
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanisms for light-driven evolution of environmentally persistent free radicals and photolytic degradation of PAHs on Fe(III)-montmorillonite surface.
    Jia H; Zhao S; Shi Y; Zhu K; Gao P; Zhu L
    J Hazard Mater; 2019 Jan; 362():92-98. PubMed ID: 30236946
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.