BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 30219865)

  • 1. Quantitative assessment of DNA damage in the industrial ethanol production strain Saccharomyces cerevisiae PE-2.
    Silva PC; Domingues L; Collins T; Oliveira R; Johansson B
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30219865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of genetic background of engineered xylose-fermenting industrial Saccharomyces cerevisiae strains for ethanol production from lignocellulosic hydrolysates.
    Lopes DD; Rosa CA; Hector RE; Dien BS; Mertens JA; Ayub MAZ
    J Ind Microbiol Biotechnol; 2017 Nov; 44(11):1575-1588. PubMed ID: 28891041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural.
    Hasunuma T; Ismail KSK; Nambu Y; Kondo A
    J Biosci Bioeng; 2014 Feb; 117(2):165-169. PubMed ID: 23916856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation.
    Jansen MLA; Bracher JM; Papapetridis I; Verhoeven MD; de Bruijn H; de Waal PP; van Maris AJA; Klaassen P; Pronk JT
    FEMS Yeast Res; 2017 Aug; 17(5):. PubMed ID: 28899031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial robust yeast isolates with great potential for fermentation of lignocellulosic biomass.
    Pereira FB; Romaní A; Ruiz HA; Teixeira JA; Domingues L
    Bioresour Technol; 2014 Jun; 161():192-9. PubMed ID: 24704884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway.
    Ishii J; Yoshimura K; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors.
    Cunha JT; Aguiar TQ; Romaní A; Oliveira C; Domingues L
    Bioresour Technol; 2015 Sep; 191():7-16. PubMed ID: 25974617
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of robustness and ethanol production of ethanologenic Saccharomyces cerevisiae under co-stress of heat and inhibitors.
    Lu Y; Cheng YF; He XP; Guo XN; Zhang BR
    J Ind Microbiol Biotechnol; 2012 Jan; 39(1):73-80. PubMed ID: 21698486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of the PHO13 gene in Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysate in the presence of acetic and formic acids, and furfural.
    Fujitomi K; Sanda T; Hasunuma T; Kondo A
    Bioresour Technol; 2012 May; 111():161-6. PubMed ID: 22357292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production.
    Sasano Y; Watanabe D; Ukibe K; Inai T; Ohtsu I; Shimoi H; Takagi H
    J Biosci Bioeng; 2012 Apr; 113(4):451-5. PubMed ID: 22178024
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.
    Pereira FB; Teixeira MC; Mira NP; Sá-Correia I; Domingues L
    J Ind Microbiol Biotechnol; 2014 Dec; 41(12):1753-61. PubMed ID: 25287021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains.
    Tomás-Pejó E; Oliva JM; Ballesteros M; Olsson L
    Biotechnol Bioeng; 2008 Aug; 100(6):1122-31. PubMed ID: 18383076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain.
    Heer D; Sauer U
    Microb Biotechnol; 2008 Nov; 1(6):497-506. PubMed ID: 21261870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of major inhibitory compounds from sugarcane-based lignocellulosic hydrolysates on the physiology of yeast strains and lactic acid bacteria.
    Cola P; Procópio DP; Alves ATC; Carnevalli LR; Sampaio IV; da Costa BLV; Basso TO
    Biotechnol Lett; 2020 Apr; 42(4):571-582. PubMed ID: 31974646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional profiling of Saccharomyces cerevisiae T2 cells upon exposure to hardwood spent sulphite liquor: comparison to acetic acid, furfural and hydroxymethylfurfural.
    Bajwa PK; Ho CY; Chan CK; Martin VJ; Trevors JT; Lee H
    Antonie Van Leeuwenhoek; 2013 Jun; 103(6):1281-95. PubMed ID: 23539198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasmid-mediate transfer of FLO1 into industrial Saccharomyces cerevisiae PE-2 strain creates a strain useful for repeat-batch fermentations involving flocculation-sedimentation.
    Gomes DG; Guimarães PM; Pereira FB; Teixeira JA; Domingues L
    Bioresour Technol; 2012 Mar; 108():162-8. PubMed ID: 22285899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering the robustness of Saccharomyces cerevisiae by introducing bifunctional glutathione synthase gene.
    Qiu Z; Deng Z; Tan H; Zhou S; Cao L
    J Ind Microbiol Biotechnol; 2015 Apr; 42(4):537-42. PubMed ID: 25561319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate.
    Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X
    Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.