BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30219944)

  • 1. Modifications of the axon initial segment during the hibernation of the Syrian hamster.
    León-Espinosa G; Antón-Fernández A; Tapia-González S; DeFelipe J; Muñoz A
    Brain Struct Funct; 2018 Dec; 223(9):4307-4321. PubMed ID: 30219944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyramidal cell axon initial segment in Alzheimer´s disease.
    Antón-Fernández A; León-Espinosa G; DeFelipe J; Muñoz A
    Sci Rep; 2022 May; 12(1):8722. PubMed ID: 35610289
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased adult neurogenesis in hibernating Syrian hamster.
    León-Espinosa G; García E; Gómez-Pinedo U; Hernández F; DeFelipe J; Ávila J
    Neuroscience; 2016 Oct; 333():181-92. PubMed ID: 27436535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Golgi Apparatus of Neocortical Glial Cells During Hibernation in the Syrian Hamster.
    León-Espinosa G; DeFelipe J; Muñoz A
    Front Neuroanat; 2019; 13():92. PubMed ID: 31824270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in the Golgi Apparatus of Neocortical and Hippocampal Neurons in the Hibernating Hamster.
    Antón-Fernández A; León-Espinosa G; DeFelipe J; Muñoz A
    Front Neuroanat; 2015; 9():157. PubMed ID: 26696838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in neocortical and hippocampal microglial cells during hibernation.
    León-Espinosa G; Regalado-Reyes M; DeFelipe J; Muñoz A
    Brain Struct Funct; 2018 May; 223(4):1881-1895. PubMed ID: 29260372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. M-current inhibition rapidly induces a unique CK2-dependent plasticity of the axon initial segment.
    Lezmy J; Lipinsky M; Khrapunsky Y; Patrich E; Shalom L; Peretz A; Fleidervish IA; Attali B
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10234-E10243. PubMed ID: 29109270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain inflammatory cytokines and microglia morphology changes throughout hibernation phases in Syrian hamster.
    Cogut V; Bruintjes JJ; Eggen BJL; van der Zee EA; Henning RH
    Brain Behav Immun; 2018 Feb; 68():17-22. PubMed ID: 29038037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tau phosphorylation-associated spine regression does not impair hippocampal-dependent memory in hibernating golden hamsters.
    Bullmann T; Seeger G; Stieler J; Hanics J; Reimann K; Kretzschmann TP; Hilbrich I; Holzer M; Alpár A; Arendt T
    Hippocampus; 2016 Mar; 26(3):301-18. PubMed ID: 26332578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomic Study of Hibernating Syrian Hamster Brains: In Search of Neuroprotective Agents.
    Gonzalez-Riano C; León-Espinosa G; Regalado-Reyes M; García A; DeFelipe J; Barbas C
    J Proteome Res; 2019 Mar; 18(3):1175-1190. PubMed ID: 30623656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks.
    Arendt T; Bullmann T
    Am J Physiol Regul Integr Comp Physiol; 2013 Sep; 305(5):R478-89. PubMed ID: 23824962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The physiological link between metabolic rate depression and tau phosphorylation in mammalian hibernation.
    Stieler JT; Bullmann T; Kohl F; Tøien Ø; Brückner MK; Härtig W; Barnes BM; Arendt T
    PLoS One; 2011 Jan; 6(1):e14530. PubMed ID: 21267079
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster.
    Talaei F; Bouma HR; Hylkema MN; Strijkstra AM; Boerema AS; Schmidt M; Henning RH
    J Exp Biol; 2012 Aug; 215(Pt 16):2912-9. PubMed ID: 22837466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hypothalamic orexinergic neuron changes during the hibernation of the Syrian hamster.
    López JM; Carballeira P; Pozo J; León-Espinosa G; Muñoz A
    Front Neuroanat; 2022; 16():993421. PubMed ID: 36157325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of the Axon Initial Segment: Fast and Slow Processes with Multiple Functional Roles.
    Petersen AV; Cotel F; Perrier JF
    Neuroscientist; 2017 Aug; 23(4):364-373. PubMed ID: 27143656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the axon initial segment of mice substantia nigra dopaminergic neurons.
    González-Cabrera C; Meza R; Ulloa L; Merino-Sepúlveda P; Luco V; Sanhueza A; Oñate-Ponce A; Bolam JP; Henny P
    J Comp Neurol; 2017 Nov; 525(16):3529-3542. PubMed ID: 28734032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible paired helical filament-like phosphorylation of tau is an adaptive process associated with neuronal plasticity in hibernating animals.
    Arendt T; Stieler J; Strijkstra AM; Hut RA; Rüdiger J; Van der Zee EA; Harkany T; Holzer M; Härtig W
    J Neurosci; 2003 Aug; 23(18):6972-81. PubMed ID: 12904458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Phosphorylated Tau on Cortical Pyramidal Neuron Morphology during Hibernation.
    Regalado-Reyes M; Benavides-Piccione R; Fernaud-Espinosa I; DeFelipe J; León-Espinosa G
    Cereb Cortex Commun; 2020; 1(1):tgaa018. PubMed ID: 34296096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Axon initial segment plasticity accompanies enhanced excitation of visual cortical neurons in aged rats.
    Ding Y; Chen T; Wang Q; Yuan Y; Hua T
    Neuroreport; 2018 Dec; 29(18):1537-1543. PubMed ID: 30320703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperphosphorylated tau causes reduced hippocampal CA1 excitability by relocating the axon initial segment.
    Hatch RJ; Wei Y; Xia D; Götz J
    Acta Neuropathol; 2017 May; 133(5):717-730. PubMed ID: 28091722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.