BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 30219952)

  • 1. Nanomedicines for developing cancer nanotherapeutics: from benchtop to bedside and beyond.
    Iqbal J; Abbasi BA; Ahmad R; Mahmood T; Ali B; Khalil AT; Kanwal S; Shah SA; Alam MM; Badshah H; Munir A
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9449-9470. PubMed ID: 30219952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Strategies to improve tumor penetration of nanomedicines through nanoparticle design.
    Zhang YR; Lin R; Li HJ; He WL; Du JZ; Wang J
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2019 Jan; 11(1):e1519. PubMed ID: 29659166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved Targeting of Cancers with Nanotherapeutics.
    Foster C; Watson A; Kaplinsky J; Kamaly N
    Methods Mol Biol; 2017; 1530():13-37. PubMed ID: 28150194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Factors Influencing the Delivery Efficiency of Cancer Nanomedicines.
    Ullah R; Wazir J; Khan FU; Diallo MT; Ihsan AU; Mikrani R; Aquib M; Zhou X
    AAPS PharmSciTech; 2020 May; 21(4):132. PubMed ID: 32409932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Tumor Penetration of Nanomedicines.
    Sun Q; Ojha T; Kiessling F; Lammers T; Shi Y
    Biomacromolecules; 2017 May; 18(5):1449-1459. PubMed ID: 28328191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine.
    Du JZ; Li HJ; Wang J
    Acc Chem Res; 2018 Nov; 51(11):2848-2856. PubMed ID: 30346728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overcoming tumor microenvironment obstacles: Current approaches for boosting nanodrug delivery.
    Wang X; Zhang H; Chen X; Wu C; Ding K; Sun G; Luo Y; Xiang D
    Acta Biomater; 2023 Aug; 166():42-68. PubMed ID: 37257574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
    Shi J; Xiao Z; Kamaly N; Farokhzad OC
    Acc Chem Res; 2011 Oct; 44(10):1123-34. PubMed ID: 21692448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Approaches for Improving Intratumoral Accumulation and Distribution of Nanomedicines.
    Durymanov MO; Rosenkranz AA; Sobolev AS
    Theranostics; 2015; 5(9):1007-20. PubMed ID: 26155316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in refunctionalization of erythrocyte-based nanomedicine for enhancing cancer-targeted drug delivery.
    Sun D; Chen J; Wang Y; Ji H; Peng R; Jin L; Wu W
    Theranostics; 2019; 9(23):6885-6900. PubMed ID: 31660075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanomedicine: An effective tool in cancer therapy.
    Aftab S; Shah A; Nadhman A; Kurbanoglu S; Aysıl Ozkan S; Dionysiou DD; Shukla SS; Aminabhavi TM
    Int J Pharm; 2018 Apr; 540(1-2):132-149. PubMed ID: 29427746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Brain Tumors with Nanomedicines: Overcoming Blood Brain Barrier Challenges.
    Khaitan D; Reddy PL; Ningaraj N
    Curr Clin Pharmacol; 2018; 13(2):110-119. PubMed ID: 29651960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The development of novel tumor targeting delivery strategy].
    Gao HL; Jiang XG
    Yao Xue Xue Bao; 2016 Feb; 51(2):272-80. PubMed ID: 29856581
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale drug delivery for targeted chemotherapy.
    Xin Y; Huang Q; Tang JQ; Hou XY; Zhang P; Zhang LZ; Jiang G
    Cancer Lett; 2016 Aug; 379(1):24-31. PubMed ID: 27235607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential drug delivery nanosystems for improving tumor penetration.
    Peng F; Li R; Zhang F; Qin L; Ling G; Zhang P
    Eur J Pharm Biopharm; 2020 Jun; 151():220-238. PubMed ID: 32311427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.
    van Elk M; Murphy BP; Eufrásio-da-Silva T; O'Reilly DP; Vermonden T; Hennink WE; Duffy GP; Ruiz-Hernández E
    Int J Pharm; 2016 Dec; 515(1-2):132-164. PubMed ID: 27725268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization.
    Sun Q; Zhou Z; Qiu N; Shen Y
    Adv Mater; 2017 Apr; 29(14):. PubMed ID: 28234430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tumor heterogeneity and nanoparticle-mediated tumor targeting: the importance of delivery system personalization.
    Swetha KL; Roy A
    Drug Deliv Transl Res; 2018 Oct; 8(5):1508-1526. PubMed ID: 30128797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanomedicines as emerging platform for simultaneous delivery of cancer therapeutics: new developments in overcoming drug resistance and optimizing anticancer efficacy.
    Hussain Z; Arooj M; Malik A; Hussain F; Safdar H; Khan S; Sohail M; Pandey M; Choudhury H; Ei Thu H
    Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1015-1024. PubMed ID: 29873531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promising effects of nanomedicine in cancer drug delivery.
    Wakaskar RR
    J Drug Target; 2018 Apr; 26(4):319-324. PubMed ID: 28875739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.