These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30219993)

  • 1. Uric Acid Treatment After Stroke Prevents Long-Term Middle Cerebral Artery Remodelling and Attenuates Brain Damage in Spontaneously Hypertensive Rats.
    Jiménez-Xarrié E; Pérez B; Dantas AP; Puertas-Umbert L; Martí-Fabregas J; Chamorro Á; Planas AM; Vila E; Jiménez-Altayó F
    Transl Stroke Res; 2020 Dec; 11(6):1332-1347. PubMed ID: 30219993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension.
    Vila E; Solé M; Masip N; Puertas-Umbert L; Amaro S; Dantas AP; Unzeta M; D'Ocon P; Planas AM; Chamorro Á; Jiménez-Altayó F
    Biochem Pharmacol; 2019 Jun; 164():115-128. PubMed ID: 30954486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histone deacetylase inhibition by suberoylanilide hydroxamic acid during reperfusion promotes multifaceted brain and vascular protection in spontaneously hypertensive rats with transient ischaemic stroke.
    Díaz-Pérez A; Pérez B; Manich G; García-Aranda J; Navarro X; Penas C; Jiménez-Altayó F
    Biomed Pharmacother; 2024 Mar; 172():116287. PubMed ID: 38382328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Middle cerebral artery remodeling following transient brain ischemia is linked to early postischemic hyperemia: a target of uric acid treatment.
    Onetti Y; Dantas AP; Pérez B; Cugota R; Chamorro A; Planas AM; Vila E; Jiménez-Altayó F
    Am J Physiol Heart Circ Physiol; 2015 Apr; 308(8):H862-74. PubMed ID: 25637543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transient middle cerebral artery occlusion causes different structural, mechanical, and myogenic alterations in normotensive and hypertensive rats.
    Jiménez-Altayó F; Martín A; Rojas S; Justicia C; Briones AM; Giraldo J; Planas AM; Vila E
    Am J Physiol Heart Circ Physiol; 2007 Jul; 293(1):H628-35. PubMed ID: 17400711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DL-3-n-Butylphthalide, an anti-oxidant agent, prevents neurological deficits and cerebral injury following stroke per functional analysis, magnetic resonance imaging and histological assessment.
    Zhang L; Yu WH; Wang YX; Wang C; Zhao F; Qi W; Chan WM; Huang Y; Wai MS; Dong J; Yew DT
    Curr Neurovasc Res; 2012 Aug; 9(3):167-75. PubMed ID: 22621233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated production of 20-HETE in the cerebral vasculature contributes to severity of ischemic stroke and oxidative stress in spontaneously hypertensive rats.
    Dunn KM; Renic M; Flasch AK; Harder DR; Falck J; Roman RJ
    Am J Physiol Heart Circ Physiol; 2008 Dec; 295(6):H2455-65. PubMed ID: 18952718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET O-15 cerebral blood flow and metabolism after acute stroke in spontaneously hypertensive rats.
    Temma T; Kuge Y; Sano K; Kamihashi J; Obokata N; Kawashima H; Magata Y; Saji H
    Brain Res; 2008 May; 1212():18-24. PubMed ID: 18445493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia.
    Ejaz S; Emmrich JV; Sitnikov SL; Hong YT; Sawiak SJ; Fryer TD; Aigbirhio FI; Williamson DJ; Baron JC
    Brain; 2016 Mar; 139(Pt 3):751-64. PubMed ID: 26767570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lesion development and reperfusion benefit in relation to vascular occlusion patterns after embolic stroke in rats.
    Bouts MJ; Tiebosch IA; van der Toorn A; Hendrikse J; Dijkhuizen RM
    J Cereb Blood Flow Metab; 2014 Feb; 34(2):332-8. PubMed ID: 24301289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Angiotensin II AT(1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats.
    Nishimura Y; Ito T; Saavedra JM
    Stroke; 2000 Oct; 31(10):2478-86. PubMed ID: 11022082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impaired CBF regulation and high CBF threshold contribute to the increased sensitivity of spontaneously hypertensive rats to cerebral ischemia.
    Kang BT; Leoni RF; Silva AC
    Neuroscience; 2014 Jun; 269():223-31. PubMed ID: 24680939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uric Acid Neuroprotection Associated to IL-6/STAT3 Signaling Pathway Activation in Rat Ischemic Stroke.
    Aliena-Valero A; Rius-Pérez S; Baixauli-Martín J; Torregrosa G; Chamorro Á; Pérez S; Salom JB
    Mol Neurobiol; 2021 Jan; 58(1):408-423. PubMed ID: 32959172
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor necrosis factor-α inhibition attenuates middle cerebral artery remodeling but increases cerebral ischemic damage in hypertensive rats.
    Pires PW; Girgla SS; Moreno G; McClain JL; Dorrance AM
    Am J Physiol Heart Circ Physiol; 2014 Sep; 307(5):H658-69. PubMed ID: 25015967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fullerenols and glucosamine fullerenes reduce infarct volume and cerebral inflammation after ischemic stroke in normotensive and hypertensive rats.
    Fluri F; Grünstein D; Cam E; Ungethuem U; Hatz F; Schäfer J; Samnick S; Israel I; Kleinschnitz C; Orts-Gil G; Moch H; Zeis T; Schaeren-Wiemers N; Seeberger P
    Exp Neurol; 2015 Mar; 265():142-51. PubMed ID: 25625851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in the evolution of the ischemic penumbra in stroke-prone spontaneously hypertensive and Wistar-Kyoto rats.
    McCabe C; Gallagher L; Gsell W; Graham D; Dominiczak AF; Macrae IM
    Stroke; 2009 Dec; 40(12):3864-8. PubMed ID: 19797186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of TTC-909 on cerebral infarction following permanent occlusion of the middle cerebral artery in stroke prone spontaneously hypertensive rats.
    Karasawa Y; Komiyama H; Yoshida S; Hino N; Katsuura Y; Nakaike S; Araki H
    J Pharmacol Sci; 2003 Apr; 91(4):305-12. PubMed ID: 12719659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stroke-prone rats exhibit prolonged behavioral deficits without increased brain injury: an indication of disrupted post-stroke brain recovery of function.
    Maguire S; Strittmatter R; Chandra S; Barone FC
    Neurosci Lett; 2004 Jan; 354(3):229-33. PubMed ID: 14700738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impaired functional recovery after stroke in the stroke-prone spontaneously hypertensive rat.
    McGill JK; Gallagher L; Carswell HV; Irving EA; Dominiczak AF; Macrae IM
    Stroke; 2005 Jan; 36(1):135-41. PubMed ID: 15569870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dorsal cerebral collaterals of stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar Kyoto rats (WKY).
    Coyle P
    Anat Rec; 1987 May; 218(1):40-4. PubMed ID: 3605659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.