These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 30220049)

  • 61. Pharmacophore based drug design approach as a practical process in drug discovery.
    Gao Q; Yang L; Zhu Y
    Curr Comput Aided Drug Des; 2010 Mar; 6(1):37-49. PubMed ID: 20370694
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Integrating ligand-based and protein-centric virtual screening of kinase inhibitors using ensembles of multiple protein kinase genes and conformations.
    Dixit A; Verkhivker GM
    J Chem Inf Model; 2012 Oct; 52(10):2501-15. PubMed ID: 22992037
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural insight into Mycobacterium tuberculosis maltosyl transferase inhibitors: pharmacophore-based virtual screening, docking, and molecular dynamics simulations.
    Sengupta S; Roy D; Bandyopadhyay S
    J Biomol Struct Dyn; 2015; 33(12):2655-66. PubMed ID: 25669125
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Strategies for generating less toxic P-selectin inhibitors: pharmacophore modeling, virtual screening and counter pharmacophore screening to remove toxic hits.
    Ananthula RS; Ravikumar M; Pramod AB; Madala KK; Mahmood SK
    J Mol Graph Model; 2008 Nov; 27(4):546-57. PubMed ID: 18993099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors.
    Vyas VK; Ghate M; Goel A
    J Mol Graph Model; 2013 May; 42():17-25. PubMed ID: 23507201
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Enhancing the Enrichment of Pharmacophore-Based Target Prediction for the Polypharmacological Profiles of Drugs.
    Wang X; Pan C; Gong J; Liu X; Li H
    J Chem Inf Model; 2016 Jun; 56(6):1175-83. PubMed ID: 27187084
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.
    Liu Z; Su M; Han L; Liu J; Yang Q; Li Y; Wang R
    Acc Chem Res; 2017 Feb; 50(2):302-309. PubMed ID: 28182403
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Discovery of high affinity ligands for β2-adrenergic receptor through pharmacophore-based high-throughput virtual screening and docking.
    Yakar R; Akten ED
    J Mol Graph Model; 2014 Sep; 53():148-160. PubMed ID: 25137647
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Ensembling and filtering: an effective and rapid in silico multitarget drug-design strategy to identify RIPK1 and RIPK3 inhibitors.
    Fayaz SM; Rajanikant GK
    J Mol Model; 2015 Dec; 21(12):314. PubMed ID: 26589407
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Molecular dynamics-assisted pharmacophore modeling of caspase-3-isatin sulfonamide complex: Recognizing essential intermolecular contacts and features of sulfonamide inhibitor class for caspase-3 binding.
    Kumar SP; Patel CN; Jha PC; Pandya HA
    Comput Biol Chem; 2017 Dec; 71():117-128. PubMed ID: 29153890
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations.
    Panicker PS; Melge AR; Biswas L; Keechilat P; Mohan CG
    Chem Biol Drug Des; 2017 Oct; 90(4):629-636. PubMed ID: 28303669
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Ligand-K* Sequence Elimination: A Novel Algorithm for Ensemble-Based Redesign of Receptor-Ligand Binding.
    Shen ; Tian H; Tang D; Yao W; Gao X
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):573-8. PubMed ID: 26356024
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening.
    Chaudhari P; Bari S
    Mol Divers; 2016 Feb; 20(1):41-53. PubMed ID: 26416560
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ligand-supported homology modelling of protein binding-sites using knowledge-based potentials.
    Evers A; Gohlke H; Klebe G
    J Mol Biol; 2003 Nov; 334(2):327-45. PubMed ID: 14607122
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Hierarchical Graph Representation of Pharmacophore Models.
    Arthur G; Oliver W; Klaus B; Thomas S; Gökhan I; Sharon B; Isabelle T; Pierre D; Thierry L
    Front Mol Biosci; 2020; 7():599059. PubMed ID: 33425991
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A New Pharmacophore Model for the Design of Sigma-1 Ligands Validated on a Large Experimental Dataset.
    Pascual R; Almansa C; Plata-Salamán C; Vela JM
    Front Pharmacol; 2019; 10():519. PubMed ID: 31214020
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
    Cang Z; Mu L; Wei GW
    PLoS Comput Biol; 2018 Jan; 14(1):e1005929. PubMed ID: 29309403
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Virtual Screening of the Drug Protein with a Few Crystal Structures Based on the Adaboost-SVM.
    Wang MY; Li P; Qiao PL
    Comput Math Methods Med; 2016; 2016():4809831. PubMed ID: 27127534
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Exploring the potential of protein-based pharmacophore models in ligand pose prediction and ranking.
    Hu B; Lill MA
    J Chem Inf Model; 2013 May; 53(5):1179-90. PubMed ID: 23621564
    [TBL] [Abstract][Full Text] [Related]  

  • 80.
    Heider J; Kilian J; Garifulina A; Hering S; Langer T; Seidel T
    J Chem Inf Model; 2023 Jan; 63(1):101-110. PubMed ID: 36526584
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.