BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 30220064)

  • 1. Discovery and mechanism study of a novel chromium-accumulating plant, Lonicera japonica Thunb.
    Meng F; Gao Y; Feng Q
    Environ Sci Pollut Res Int; 2019 May; 26(14):13812-13817. PubMed ID: 30220064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxalic acid enhances Cr tolerance in the accumulating plant Leersia hexandra Swartz.
    Wang D; Zhang X; Liu J; Zhu Y; Zhang H; Zhang A; Jin X
    Int J Phytoremediation; 2012 Dec; 14(10):966-77. PubMed ID: 22908658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz.
    Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ
    Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of cadmium hyperaccumulation on the concentrations of four trace elements in Lonicera japonica Thunb.
    Liu Z; He X; Chen W
    Ecotoxicology; 2011 Jun; 20(4):698-705. PubMed ID: 21318389
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator--Lonicera japonica Thunb.
    Liu Z; He X; Chen W; Yuan F; Yan K; Tao D
    J Hazard Mater; 2009 Sep; 169(1-3):170-5. PubMed ID: 19380199
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of low-molecular-weight organic-acids (LMWOAs) on treatment of chromium-contaminated soils by compost-phytoremediation: Kinetics of the chromium release and fractionation.
    Chen H; Dou J; Xu H
    J Environ Sci (China); 2018 Aug; 70():45-53. PubMed ID: 30037410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hormesis phenomena under Cd stress in a hyperaccumulator--Lonicera japonica Thunb.
    Jia L; He X; Chen W; Liu Z; Huang Y; Yu S
    Ecotoxicology; 2013 Apr; 22(3):476-85. PubMed ID: 23359063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Citric acid assisted phytoextraction of chromium by sunflower; morpho-physiological and biochemical alterations in plants.
    Farid M; Ali S; Rizwan M; Ali Q; Abbas F; Bukhari SAH; Saeed R; Wu L
    Ecotoxicol Environ Saf; 2017 Nov; 145():90-102. PubMed ID: 28710950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress.
    Zeng F; Chen S; Miao Y; Wu F; Zhang G
    Environ Pollut; 2008 Sep; 155(2):284-9. PubMed ID: 18162271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential of Leersia hexandra Swartz for phytoextraction of Cr from soil.
    Liu J; Duan C; Zhang X; Zhu Y; Lu X
    J Hazard Mater; 2011 Apr; 188(1-3):85-91. PubMed ID: 21320751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium stimulated cooperation between bacterial endophytes and plant intrinsic detoxification mechanism in Lonicera japonica thunb.
    Xie M; Gao X; Zhang S; Fu X; Le Y; Wang L
    Chemosphere; 2023 Jun; 325():138411. PubMed ID: 36931404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.
    Ranieri E; Fratino U; Petrella A; Torretta V; Rada EC
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):15983-9. PubMed ID: 27146531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of plasma-based spectroscopy and infrared microspectroscopy techniques to determine the uptake and effects of chromium(III) and chromium(VI) on Parkinsonia aculeata.
    Zhao Y; Peralta-Videa JR; Lopez-Moreno ML; Saupe GB; Gardea-Torresdey JL
    Int J Phytoremediation; 2011; 13 Suppl 1():17-33. PubMed ID: 22046749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents.
    Taghipour M; Jalali M
    Chemosphere; 2016 Jul; 155():395-404. PubMed ID: 27139119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr
    Patra DK; Pradhan C; Patra HK
    Chemosphere; 2018 Feb; 193():793-799. PubMed ID: 29175407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential of Mauritius Hemp (Furcraea gigantea Vent.) for the Remediation of Chromium Contaminated Soils.
    Ramana S; Biswas AK; Singh AB; Ahirwar NK; Prasad RD; Srivastava S
    Int J Phytoremediation; 2015; 17(7):709-15. PubMed ID: 25976885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L.
    Afshan S; Ali S; Bharwana SA; Rizwan M; Farid M; Abbas F; Ibrahim M; Mehmood MA; Abbasi GH
    Environ Sci Pollut Res Int; 2015 Aug; 22(15):11679-89. PubMed ID: 25850739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characterization of Cr Tolerance and Accumulation in
    Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF
    Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities.
    García-Gonzalo P; Del Real AEP; Lobo MC; Pérez-Sanz A
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25713-25724. PubMed ID: 27151239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation.
    Amin H; Ahmed Arain B; Abbasi MS; Amin F; Jahangir TM; Soomro NU
    Int J Phytoremediation; 2019; 21(4):352-363. PubMed ID: 30638047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.