These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3022022)

  • 1. [Phosphoenolpyruvate:sugar phosphotransferase systems in a strain of Lactobacillus casei subsp. casei].
    Nagasaki H; Tanaka S
    Nihon Saikingaku Zasshi; 1986 Jul; 41(4):709-16. PubMed ID: 3022022
    [No Abstract]   [Full Text] [Related]  

  • 2. Transport of D-xylose in Lactobacillus pentosus, Lactobacillus casei, and Lactobacillus plantarum: evidence for a mechanism of facilitated diffusion via the phosphoenolpyruvate:mannose phosphotransferase system.
    Chaillou S; Pouwels PH; Postma PW
    J Bacteriol; 1999 Aug; 181(16):4768-73. PubMed ID: 10438743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular analysis of the glucose-specific phosphoenolpyruvate : sugar phosphotransferase system from Lactobacillus casei and its links with the control of sugar metabolism.
    Yebra MJ; Monedero V; Zúñiga M; Deutscher J; Pérez-Martínez G
    Microbiology (Reading); 2006 Jan; 152(Pt 1):95-104. PubMed ID: 16385119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glycolytic genes pfk and pyk from Lactobacillus casei are induced by sugars transported by the phosphoenolpyruvate:sugar phosphotransferase system and repressed by CcpA.
    Viana R; Pérez-Martínez G; Deutscher J; Monedero V
    Arch Microbiol; 2005 Sep; 183(6):385-93. PubMed ID: 16075200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose transport by the phosphoenolpyruvate:mannose phosphotransferase system in Lactobacillus casei ATCC 393 and its role in carbon catabolite repression.
    Veyrat A; Monedero V; Pérez-Martínez G
    Microbiology (Reading); 1994 May; 140 ( Pt 5)():1141-9. PubMed ID: 8025679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Purification and characterization of the IIIXtl phospho-carrier protein of the phosphoenolpyruvate-dependent xylitol:phosphotransferase found in Lactobacillus casei C183.
    London J; Hausman SZ
    J Bacteriol; 1983 Nov; 156(2):611-9. PubMed ID: 6415035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utilization of D-ribitol by Lactobacillus casei BL23 requires a mannose-type phosphotransferase system and three catabolic enzymes.
    Bourand A; Yebra MJ; Boël G; Mazé A; Deutscher J
    J Bacteriol; 2013 Jun; 195(11):2652-61. PubMed ID: 23564164
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An esterase gene from Lactobacillus casei cotranscribed with genes encoding a phosphoenolpyruvate:sugar phosphotransferase system and regulated by a LevR-like activator and sigma54 factor.
    Yebra MJ; Viana R; Monedero V; Deutscher J; Pérez-Martínez G
    J Mol Microbiol Biotechnol; 2004; 8(2):117-28. PubMed ID: 15925903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phosphotransferase system of Lactobacillus casei: regulation of carbon metabolism and connection to cold shock response.
    Monedero V; Mazé A; Boël G; Zúñiga M; Beaufils S; Hartke A; Deutscher J
    J Mol Microbiol Biotechnol; 2007; 12(1-2):20-32. PubMed ID: 17183208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of lactose-phosphoenolpyruvate-dependent phosphotransferase system and beta-D-phosphogalactoside galactohydrolase activities in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1195-203. PubMed ID: 6406426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synbiotic impact of tagatose on viability of Lactobacillus rhamnosus strain GG mediated by the phosphotransferase system (PTS).
    Koh JH; Choi SH; Park SW; Choi NJ; Kim Y; Kim SH
    Food Microbiol; 2013 Oct; 36(1):7-13. PubMed ID: 23764214
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative Genomic and Proteomic Analysis of the Response of Lactobacillus casei Zhang to Glucose Restriction.
    Yu J; Hui W; Cao C; Pan L; Zhang H; Zhang W
    J Proteome Res; 2018 Mar; 17(3):1290-1299. PubMed ID: 29405720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation and characterization of the galactose-phosphoenolpyruvate-dependent phosphotransferase system in Lactobacillus casei.
    Chassy BM; Thompson J
    J Bacteriol; 1983 Jun; 154(3):1204-14. PubMed ID: 6406427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzyme I and HPr from Lactobacillus casei: their role in sugar transport, carbon catabolite repression and inducer exclusion.
    Viana R; Monedero V; Dossonnet V; Vadeboncoeur C; Pérez-Martínez G; Deutscher J
    Mol Microbiol; 2000 May; 36(3):570-84. PubMed ID: 10844647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xylitol-mediated transient inhibition of ribitol utilization by Lactobacillus casei.
    London J; Hausman S
    J Bacteriol; 1982 May; 150(2):657-61. PubMed ID: 6802797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetics of L-sorbose transport and metabolism in Lactobacillus casei.
    Yebra MJ; Veyrat A; Santos MA; Pérez-Martínez G
    J Bacteriol; 2000 Jan; 182(1):155-63. PubMed ID: 10613875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The sim operon facilitates the transport and metabolism of sucrose isomers in Lactobacillus casei ATCC 334.
    Thompson J; Jakubovics N; Abraham B; Hess S; Pikis A
    J Bacteriol; 2008 May; 190(9):3362-73. PubMed ID: 18310337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of the plasmid-encoded lactose-PTS of Lactobacillus casei.
    Chassy BM; Alpert CA
    FEMS Microbiol Rev; 1989 Jun; 5(1-2):157-65. PubMed ID: 2517398
    [No Abstract]   [Full Text] [Related]  

  • 19. A unique gene cluster for the utilization of the mucosal and human milk-associated glycans galacto-N-biose and lacto-N-biose in Lactobacillus casei.
    Bidart GN; Rodríguez-Díaz J; Monedero V; Yebra MJ
    Mol Microbiol; 2014 Aug; 93(3):521-38. PubMed ID: 24942885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Futile xylitol cycle in Lactobacillus casei.
    Hausman SZ; Thompson J; London J
    J Bacteriol; 1984 Oct; 160(1):211-5. PubMed ID: 6090413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.